This is completed downloadable of Solution Manual for Separation Process Engineering: Includes Mass Transfer Analysis, 3rd Edition Phillip C. Wankat
Product Details:
The Definitive, Fully Updated Guide to Separation Process Engineering-Now with a Thorough Introduction to Mass Transfer Analysis Separation Process Engineering, Third Edition, is the most comprehensive, accessible guide available on modern separation processes and the fundamentals of mass transfer. Phillip C. Wankat teaches each key concept through detailed, realistic examples using real data-including up-to-date simulation practice and new spreadsheet-based exercises. Wankat thoroughly covers each of today’s leading approaches, including flash, column, and batch distillation
Table of Content:
Acknowledgments        xix
About the Author        xxi
Nomenclature        xxiii
Chapter 1: Introduction to Separation Process Engineering        1
1.1.  Importance of Separations  1
1.2.  Concept of Equilibrium  2
1.3.  Mass Transfer  4
1.4.  Problem-Solving Methods  5
1.5.  Prerequisite Material  7
1.6.  Other Resources on Separation Process Engineering  7
1.7.  Summary–Objectives  10
References  10
Homework  11
Chapter 2: Flash Distillation        13
2.1.  Basic Method of Flash Distillation  13
2.2.  Form and Sources of Equilibrium Data  15
2.3.  Graphical Representation of Binary VLE  18
2.4.  Binary Flash Distillation  22
2.5.  Multicomponent VLE  30
2.6.  Multicomponent Flash Distillation 34
2.7.  Simultaneous Multicomponent Convergence  42
2.8.  Three-Phase Flash Calculations  47
2.9.  Size Calculation  48
2.10. Utilizing Existing Flash Drums  53
2.11. Summary–Objectives  54
References  54
Homework  56
Appendix A. Computer Simulation of Flash Distillation  67
Appendix B. Spreadsheets for Flash Distillation  73
Chapter 3: Introduction to Column Distillation       79
3.1.  Developing a Distillation Cascade  79
3.2.  Distillation Equipment  86
3.3.  Specifications  88
3.4.  External Column Balances  91
3.5.  Summary–Objectives  95
References  95
Homework  95
Chapter 4: Column Distillation: Internal Stage-by-Stage Balances        101
4.1.  Internal Balances  101
4.2.  Binary Stage-by-Stage Solution Methods  105
4.3.  Introduction to the McCabe-Thiele Method  112
4.4.  Feed Line  116
4.5.  Complete McCabe-Thiele Method  124
4.6.  Profiles for Binary Distillation  127
4.7.  Open Steam Heating  129
4.8.  General McCabe-Thiele Analysis Procedure  134
4.9.  Other Distillation Column Situations  140
4.10. Limiting Operating Conditions  146
4.11. Efficiencies  148
4.12. Simulation Problems  150
4.13. New Uses for Old Columns  151
4.14. Subcooled Reflux and Superheated Boilup  153
4.15. Comparisons between Analytical and Graphical Methods  155
4.16. Summary–Objectives  156
References  158
Homework  159
Appendix A. Computer Simulations for Binary Distillation  173
Appendix B. Spreadsheets for Binary Binary Distillation  177
Chapter 5: Introduction to Multicomponent Distillation        183
5.1.  Calculational Difficulties  183
5.2.  Stage-By-Stage Calculations for Constant Molal Overflow and Constant Relative Volatility  189
5.3.  Profiles for Multicomponent Distillation  193
5.4.  Bubble-Point and Dew-Point Equilibrium Calculations  198
5.3.  Summary–Objectives  203
References  203
Homework  203
Appendix. Spreadsheet Calculations for Ternary Distillation with Constant Relative Volatility  209
Chapter 6: Exact Calculation Procedures for Multicomponent Distillation        215
6.1.  Introduction to Matrix Solution for Multicomponent Distillation  215
6.2.  Component Mass Balances in Matrix Form  217
6.3.  Initial Guesses for Flow Rates and Temperatures  220
6.4.  Temperature Convergence  221
6.5.  Energy Balances in Matrix Form  224
6.6.  Introduction to Naphtali-Sandholm Simultaneous Convergence Method  227
6.7.  Discussion  229
6.8.  Summary–Objectives  230
References  230
Homework  230
Appendix. Computer Simulations for Multicomponent Column Distillation  237
Chapter 7: Approximate Shortcut Methods for Multicomponent Distillation         243
7.1.  Total Reflux: Fenske Equation  243
7.2.  Minimum Reflux: Underwood Equations  248
7.3.  Gilliland Correlation for Number of Stages at Finite Reflux Ratio  253
7.4.  Summary–Objectives  257
References  257
Homework  258
Chapter 8: Introduction to Complex Distillation Methods         265
8.1.  Breaking Azeotropes with Other Separators  265
8.2.  Binary Heterogeneous Azeotropic Distillation Processes  266
8.3.  Steam Distillation  275
8.4.  Two-Pressure Distillation Processes  279
8.5.  Complex Ternary Distillation Systems  281
8.6.  Extractive Distillation  290
8.7.  Azeotropic Distillation with Added Solvent  296
8.8.  Distillation with Chemical Reaction  300
8.9.  Summary–Objectives  303
References  304
Homework  305
Appendix. Simulation of Complex Distillation Systems  321
Chapter 9: Batch Distillation         329
9.1.  Binary Batch Distillation: Rayleigh Equation  331
9.2.  Simple Binary Batch Distillation  332
9.3.  Constant-Level Batch Distillation  336
9.4.  Batch Steam Distillation  337
9.5.  Multistage Batch Distillation  340
9.6.  Operating Time  344
9.7.  Summary–Objectives  346
References  347
Homework  347
Chapter 10: Staged and Packed Column Design        357
10.1.  Staged Column Equipment Description  357
10.2.  Tray Efficiencies  365
10.3.  Column Diameter Calculations  370
10.4.  Balancing Calculated Diameters  376
10.5.  Sieve Tray Layout and Tray Hydraulics  378
10.6.  Valve Tray Design  386
10.7.  Introduction to Packed Column Design  388
10.8.  Packed Column Internals  388
10.9.  Height of Packing: HETP Method  390
10.10. Packed Column Flooding and Diameter Calculation  392
10.11. Economic Trade-Offs for Packed Columns  400
10.12. Choice of Column Type  401
10.13. Summary–Objectives  404
References  405
Homework  408
Appendix. Tray And Downcomer Design with Computer Simulator  416
Chapter 11: Economics and Energy Conservation in Distillation        419
11.1.  Distillation Costs  419
11.2.  Operating Effects on Costs  425
11.3.  Changes in Plant Operating Rates  432
11.4.  Energy Conservation in Distillation  433
11.5.  Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation  437
11.6.  Synthesis of Distillation Systems for Nonideal Ternary Systems  442
11.7.  Summary–Objectives  447
References  447
Homework  449
Chapter 12: Absorption and Stripping        455
12.1.  Absorption and Stripping Equilibria  457
12.2.  McCabe-Thiele Solution for Dilute Absorption  459
12.3.  Stripping Analysis for Dilute Systems  462
12.4.  Analytical Solution for Dilute Systems: Kremser Equation  463
12.5.  Efficiencies  469
12.6.  McCabe-Thiele Analysis for More Concentrated Systems  470
12.7.  Column Diameter  474
12.8.  Dilute Multisolute Absorbers and Strippers  476
12.9.  Matrix Solution for Concentrated Absorbers and Strippers  478
12.10. Irreversible Absorption and Co-Current Cascades  482
12.11. Summary–Objectives  484
References  484
Homework  485
Appendix. Computer Simulations for Absorption and Stripping  494
Chapter 13: Liquid-Liquid Extraction         499
13.1.  Extraction Processes and Equipment  499
13.2.  Countercurrent Extraction  503
13.3.  Dilute Fractional Extraction  511
13.4.  Immiscible Single-Stage and Cross-Flow Extraction  515
13.5.  Concentrated Immiscible Extraction  519
13.6.  Immiscible Batch Extraction  520
13.7.  Extraction Equilibrium for Partially Miscible Ternary Systems  522
13.8.  Mixing Calculations and the Lever-Arm Rule  524
13.9.  Partially Miscible Single-Stage and Cross-Flow Systems  528
13.10. Countercurrent Extraction Cascades for Partially Miscible Systems  531
13.11. Relationship between McCabe-Thiele and Triangular Diagrams for Partially Miscible Systems  539
13.12. Minimum Solvent Rate for Partially Miscible Systems  540
13.13. Extraction Computer Simulations  542
13.14. Design of Mixer-Settlers  543
13.15. Introduction to Design of Reciprocating-Plate (Karr) Columns  557
13.16. Summary–Objectives  558
References  559
Homework  561
Appendix. Computer Simulation of Extraction  572
Chapter 14: Washing, Leaching, and Supercritical Extraction        575
14.1.  Generalized McCabe-Thiele and Kremser Procedures  575
14.2.  Washing  576
14.3.  Leaching with Constant Flow Rates  582
14.4.  Leaching with Variable Flow Rates  584
14.5.  Supercritical Fluid Extraction  587
14.6.  Application to Other Separations  590
14.7.  Summary–Objectives  590
References  590
Homework  591
Chapter 15: Introduction to Diffusion and Mass Transfer        599
15.1.  Molecular Movement Leads to Mass Transfer  600
15.2.  Fickian Model of Diffusivity  602
15.3.  Values and Correlations for Fickian Binary Diffusivities  616
15.4.  Linear Driving-Force Model of Mass Transfer for Binary Systems  622
15.5.  Correlations for Mass-Transfer Coefficients  628
15.6.  Difficulties with Fickian Diffusion Model  640
15.7.  Maxwell-Stefan Model of Diffusion and Mass Transfer  641
15.8.  Advantages and Disadvantages of Different Diffusion and Mass-Transfer Models  655
15.9.  Summary—Objectives  655
References  656
Homework  657
Appendix. Spreadsheet for Example 15-6Â Â 661
Chapter 16: Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction        663
16.1.  HTU-NTU Analysis of Packed Distillation Columns  663
16.2.  Relationship of HETP and HTU  673
16.3.  Mass Transfer Correlations for Packed Towers  675
16.4.  HTU-NTU Analysis of Absorbers and Strippers  683
16.5.  HTU-NTU Analysis of Co-Current Absorbers  688
16.6.  Prediction of Distillation Tray Efficiency  690
16.7.  Mass-Transfer Analysis of Extraction  693
16.8.  Rate-Based Analysis of Distillation  708
16.9.  Summary–Objectives  712
References  713
Homework  714
Appendix. Computer Rate-Based Simulation of Distillation  721
Chapter 17: Introduction to Membrane Separation Processes        725
17.1.  Membrane Separation Equipment  727
17.2.  Membrane Concepts  731
17.3.  Gas Permeation  733
17.4.  Reverse Osmosis  749
17.5.  Ultrafiltration (UF)  765
17.6.  Pervaporation (PERVAP)  771
17.7.  Bulk Flow Pattern Effects  781
17.8.  Summary–Objectives  788
References  788
Homework  790
Appendix. Spreadsheets for Flow Pattern Calculations for Gas Permeation  798
Chapter 18: Introduction to Adsorption, Chromatography, and Ion Exchange         805
18.1.  Sorbents and Sorption Equilibrium  806
18.2.  Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography  819
18.3.  Solute Movement Analysis for Linear Systems: Thermal and Pressure Swing Adsorption and Simulated Moving Beds  828
18.4.  Nonlinear Solute Movement Analysis  851
18.6.  Mass and Energy Transfer in Packed Beds  870
18.7.  Mass Transfer Solutions for Linear Systems  877
18.8.  LUB Approach for Nonlinear Systems  886
18.9.  Checklist for Practical Design and Operation  890
18.10. Summary–Objectives  892
References  892
Homework  895
Appendix. Introduction to the Aspen Chromatography Simulator  909
Appendix A: Aspen Plus Troubleshooting Guide for Separations           915
Appendix B: Instructions for Fitting VLE and LLE Data with Aspen Plus          919
Appendix C: Unit Conversions and Physical Constants          921
Appendix D:Data Locations          923
Answers to Selected Problems          931
Index        939
People Also Search:
separation process engineering includes mass transfer analysis 3rd edition
separation process engineering includes mass transfer analysis
separation process engineering includes mass transfer analysis 3rd edition download scribd
separation process engineering includes mass transfer analysis 3rd edition solution manual download pdf