
Design and Analysis of Experiments with SAS Solutions Manual

2 Completely Randomized Designs with One Factor

Problem 2.1

Objectives: The objective would be to determine how changing the time-to-rise effects the

height of bread dough.

Experimental Unit: The experimental unit in would be the dough in a single loaf pan.

Response or Dependent Variable: The response would be the measured height of the risen

dough in a loaf pan.

Independent variables and lurking variables: The independent variable would be the time the

dough is allowed to rise, chosen by the experimenter. Lurking variables could be differences

in the amount of yeast from loaf to loaf, caused by nonuniform mixing of the ingredients or

a temperature gradient in the room causing some loaves to be slightly warmer or cooler than

others.

Pilot Test: A pilot test could be run to determine if the rise time could be accurately

controlled (by setting multiple timers for example) and whether the loaf height can be

measured objectively.

Bias could enter this experiment if factor levels (independent variables) are not randomly

assigned to loaves and if lurking variables, such as a temperature gradient, could influence

the risen dough height. The ability to measure the risen dough height objectively could

also cause problems. Careful attention to a pilot test and randomization could avoid these

problems.

Problem 2.2

a. The experimental unit is a piece of paper combined with the state of the air the heli-

copter will fly through.

b. We have replicates when we make and drop more than one helicopter with the same

wing length. Duplicates, on the other hand, occur when several people stand at the

ready and simultaneously measure the flight time of the same helicopter for the same

drop.
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c. The treatment factor consists of two or more levels in which each level corresponds to

a given wing length (or a given trimming size).

d. An updraft or a down-draft could have a considerable impact during the flight. The

paper stiffness, mass, and the reaction time of the people dropping and timing the

helicopter can also affect the flight time.

e. Randomization would offset any potential influence caused by a lurking variable. In

other words, the lurking variables described above create a sort of built-in bias which

can skew the results of our study. However, by randomly picking experimental units

and assigning them to treatment groups, we offset the effect of this inconsistency by

having it be ”evenly spread” amongst the treatment groups.

f. Here’s the code to create it:

1 data rand;

2 input wings @@;

3 u=ranuni (0);

4 datalines;

5 4 4 4 4 4 4 4 4 4.75 4.75 4.75 4.75 4.75 4.75 4.75 4.75

6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 6 6 6 6 6 6 6 6

7 run;

8 proc sort out=crd; by u;

9

10 data list; set crd;

11 helicopter =_n_; flight_time=’_____________’;

12 proc print; var wings flight_time; id helicopter;

13 run;

It gives the following result:

helicopter wings flight_time

1 6.00 _____________

2 6.00 _____________

3 5.50 _____________

SOME OUTPUT OMITTED

31 4.00 _____________

32 4.00 _____________

g. The experiment was conducted and the resulting data are shown below:

Obs wings time

1 4.00 5.2

2 5.50 5.0

3 4.75 5.1

SOME OUTPUT OMITTED

30 4.75 5.0

31 6.00 4.9

32 4.00 5.0
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h. The ANOVA table produced below shows that the P-value is approximately .15 and is

above the significance level α = .05. We therefore fail to reject the null hypothesis and

conclude that no statistically significant differences exist between the mean flight times

for the four wing sizes (factor levels).

1 ods graphics on/width =4.0in height =3.0in;

2 proc glm data=crd plots=diagnostics(unpack);

3 class wings;

4 model flight_time=wings/solution;

5 run;

6 ods graphics off;

Dependent Variable: flight_time

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 0.04093750 0.01364583 1.95 0.1449

Error 28 0.19625000 0.00700893

Corrected Total 31 0.23718750

i. To check the assumption of equal variances across factor levels we look at the residuals

vs. predicted value plot, which was created by the plots=diagnostics(unpack);

option on the proc glm statement above and is shown in Figure 1. The plot shows the

residual variation is approximately equal at each predicted value or factor level.

Figure 1: Residuals vs Predicted
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Furthermore, to see if the residuals are approximately normal, we look at the normal

probability plot of the residuals. The plot in Figure 2 shows that the residuals and their

normal scores more or less fall along a straight line. Thus it is safe to assume normality.

1 proc rank data=s normal=vw; var resid; ranks zscore;

2 proc gplot;

3 plot resid*zscore;

4 symbol1 i=none v=dot c=black;

5 run;

Figure 2: Normal Plot of Residuals

j. The results below show that neither the linear nor the quadratic terms are significant:

1 proc iml;

2 t={4 4.75 5.5 6};

3 C=orpol(t);

4 print C;

5 quit;

C

0.5 -0.701068 0.4750737 -0.181131

0.5 -0.206197 -0.609528 0.5796188

0.5 0.2886751 -0.376473 -0.724524

0.5 0.6185896 0.5109283 0.3260356
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1 proc glm data=crd;

2 class wings;

3 model flight_time=wings;

4 estimate ’Linear Term’ wings -0.701068 -0.206197 0.2886751 0.6185896;

5 estimate ’Quadratic Term’ wings 0.4750737 -0.609528 -0.376473 0.5109283; run;

Standard

Parameter Estimate Error t Value Pr > |t|

Linear Term -0.00773239 0.02959926 -0.26 0.7958

Quadratic Term -0.05030844 0.02959923 -1.70 0.1003

Problem 2.3

a. The experimental unit consists of the state of the network (i.e., amount of traffic) at

the point in time when the file is downloaded.

b. The treatment factor is a list of web sites, i.e. each factor level is a different web site

from which one or several files will be downloaded.

c. The response is the time it takes for the file to be downloaded.

d. The experimental error is the difference of each observed download time from the long

run average download time at a particular web site. Experimental error can be cate-

gorized into two types of error: bias error and random error. Bias error is caused by

the effect of lurking variables and can hence be offset by the random assignment of ex-

perimental units to factor levels. Random error, on the other hand, is caused by the

inability to repeat the same result (or download time) within a given factor level (or

web site). An estimate for the random experimental error can only be obtained when

replicates exists for each factor level (i.e. at least two units per factor level). Thus,

randomization reduces bias error while replicates provide an estimate of the random

error.

Problem 2.4

a. The dough for each biscuit is an experimental unit since it was randomly assigned one

of four factor levels.

b. The ANOVA table resulting from the experiment is shown below. Since P-value <

.0001 < α, we reject the null hypothesis and conclude that at least one treatment level
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mean is significantly different from the other ones, i.e. for at least one level of baking

powder, the mean rise in the dough is significantly different from the rest.

1 data bread;

2 input tsp h1 -h4;

3 height=h1; output;

4 height=h2; output;

5 height=h3; output;

6 height=h4; output;

7 keep tsp height;

8 datalines;

9 .25 11.4 11 11.3 9.5

10 .5 27.8 29.2 26.8 26

11 .75 47.6 47 47.3 45.5

12 1 61.6 62.4 63 63.9

13 run;

14

15 proc glm;

16 class tsp; model height=tsp/solution; run;

Dependent Variable: height

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 6145.731875 2048.577292 1822.65 <.0001

Error 12 13.487500 1.123958

Corrected Total 15 6159.219375

c. To test for a proportional increase of the mean response for increases in the factor levels

we can see if the linear term is significant. The results below show that it is in fact

significant.

1 proc iml;

2 t={.25 .5 .75 1};

3 C=orpol(t);

4 print C;

5 quit;

C

0.5 -0.67082 0.5 -0.223607

0.5 -0.223607 -0.5 0.6708204

0.5 0.2236068 -0.5 -0.67082

0.5 0.6708204 0.5 0.2236068

1 proc glm data=bread;

2 class tsp;

3 model height=tsp;

4 estimate ’Linear Trend ’ tsp -0.67082 -0.223607 0.223607 0.67082;

5 output out=s r=resid p=yhat;

6 run;
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Standard

Parameter Estimate Error t Value Pr > |t|

Linear Trend 39.1703043 0.53008427 73.89 <.0001

d. The variance of the experimental error is estimated by the mean square error from the

ANOVA table, which is approximately 1.124.

1 ods graphics on;

2 proc glm plots=diagnostic;

3 class tsp; model height=tsp/solution; run;

4 ods graphics off;

Figure 3: Diagnostic Panel
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e. By including the ods graphics on; statement and the plots=diagnostic option on

the model statement (shown above), proc glm produces the diagnostic panel of residual

plots shown in Figure 3. The residuals vs. predicted values plot is shown in the upper

left of the panel and indicates that the residuals have overall about the same variance,

although the second group from the left seems to have slightly larger variation than the

other groups. However, with as few observations as there are in this data set, there is

not strong evidence against homogeneity of variance. It would be safe to assume the

equal variance assumption is satisfied. The normal probability plot of the residuals is

shown in second row of the diagnostic panel. The residuals and their normal scores

seem to be satisfactorily aligned with each other. It is therefore safe enough to assume

normality.

f. Yes; if the four biscuits from each factor level were put in the oven together, then our

experimental unit would consist of the batches of dough and the dough for individual

biscuits would be subunits. Thus our experiment would not have replicates and we

would not be able to estimate the experimental error. In a case like this we might use

the variance between the subsamples within each unit as an estimate of the experimental

error, but we would do this at our own risk since this measure could be highly biased.

Problem 2.5

a. The data was entered into SAS as shown below, where the yield for the four groups

were put into one column.

1 data asp;

2 input trt$ y1-y5;

3 yield=y1; output;

4 yield=y2; output;

5 yield=y3; output;

6 yield=y4; output;

7 yield=y5; output;

8 keep trt yield;

9 datalines;

10 Control 94.7 96.1 86.5 98.5 94.9

11 IAA 89.9 94 99.1 92.8 99.4

12 ABA 96.8 87.8 89.1 91.1 89.4

13 GA3 99.1 95.3 94.6 93.1 95.7

14 CPPU 104.4 98.9 98.9 106.5 104.8

15 run;

An analysis of variance was performed in proc glm and the results are shown here:
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1 proc glm data=asp;

2 class trt;

3 model yield=trt/solution;

4 lsmeans trt/pdiff adjust=tukey;

5 means trt/dunnett(’Control ’);

6 run;

Dependent Variable: yield

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 377.4936000 94.3734000 6.98 0.0011

Error 20 270.2680000 13.5134000

Corrected Total 24 647.7616000

It is evident from the results that we must reject the null hypothesis of equal treatment

means and conclude that there is at least one treatment level whose mean is significantly

different from the rest. The P-value for the test is .0011.

b. The lsmeans option was used in proc glm to find which pairwise comparisons are

significant using Tukey’s HSD. The results below show that the CPPU treatment level

had a significantly larger mean than the other four treatment levels. No other significant

differences were detected.

Least Squares Means for effect trt

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: yield

i/j 1 2 3 4 5

1 0.0005 0.6230 0.2881 0.3973

2 0.0005 0.0114 0.0425 0.0266

3 0.6230 0.0114 0.9717 0.9948

4 0.2881 0.0425 0.9717 0.9994

5 0.3973 0.0266 0.9948 0.9994

c. The results below are similar to what Tukey’s HSD gave us, i.e. only the CPPU group

is shown to significantly improve yield compared to the control group. Furthermore, we

are 95 percent confident that the increase will be between 2.396 and 14.724. The other

three groups are not significantly different from the control group. A one-way test of

the hypothesis (using dunnettu) lead to the same conclusion.

Comparisons significant at the 0.05 level are indicated by ***.

Difference

trt Between Simultaneous 95%

Comparison Means Confidence Limits

CPPU - Control 8.560 2.396 14.724 ***

GA3 - Control 1.420 -4.744 7.584

IAA - Control 0.900 -5.264 7.064

ABA - Control -3.300 -9.464 2.864
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Problem 2.6

a. When ∆ is a multiple of σ, then we get:

λ =
r

σ2

4∑
i=1

(µi − µ̄·)2 =
r

σ2

∆2

2
= 2r

which we adjusted in the code below to obtain the power:

1 data Power;

2 do r=2 to 10;

3 nu1=4-1; * df for numerator;

4 nu2=4*(r-1); * df for denomonator;

5 alpha =.05;

6 Fcrit=finv(1-alpha ,nu1 ,nu2); *F critical value;

7 nc=2*r;*noncentrality parameter for noncentral F;

8 power=1-probf(Fcrit ,nu1 ,nu2 ,nc);

9 output;

10 end;

11 keep r nu1 nu2 nc power;

12 title Power Calculation in Data Step;

13 proc print; run;

Obs r nu1 nu2 nc power

1 2 3 4 4 0.16980

2 3 3 8 6 0.33906

3 4 3 12 8 0.50370

4 5 3 16 10 0.64423

5 6 3 20 12 0.75459

6 7 3 24 14 0.83613

7 8 3 28 16 0.89360

8 9 3 32 18 0.93258

9 10 3 36 20 0.95819

b. The results from proc glmpower are shown below and tally with the results from the

SAS Analyst Tool:

1 data case;

2 input trt meanht;

3 datalines;

4 1 -1

5 2 0

6 3 0

7 4 1

8 proc glmpower;

9 class trt;

10 model meanht=trt;

11 power

12 stddev =1

13 ntotal =8 to 40 by 4

14 power = .;

15 run;
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Computed Power

N Error

Index Total DF Power

1 8 4 0.169803

2 12 8 0.339058

3 16 12 0.503705

4 20 16 0.644233

5 24 20 0.754586

6 28 24 0.836129

7 32 28 0.893598

8 36 32 0.932577

9 40 36 0.958186

c. To obtain at least 90 percent power we need 9 replicates in each treatment level.

d. The number of replicates would change to 11 and 7 respectively.
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