2.7  The Rayleigh-Ritz formulation for the problem of solving Eq. (2.1) with boundary

conditions (2.2) and (2.3) can be stated as: Minimize the functional

F(T) - j{ [‘”} Qr}dx 7y

x=0

over all functions 7(x) with square integrable first derivatives that satisfy Eq. (2.3) at x = L.
Approximate 7(x) using two linear elements as we did before and replace into Eq. (2.1) to
obtain F(7T) = F(ay, a2, a3). Now minimize F(a;, az, a3) as a function of three variables.
Show that the final system of equations is identical to Eq. (2.31), thus, in this case, the
Galerkin method and the Rayleigh-Ritz method are equivalent.
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In Matrix form — |71 2 -lfia =%’3 25+40% which is identical to Eq. 2.31.
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