
Chapter 2

Modern Physics Concepts

PROBLEMS

1. An accelerator increases the kinetic energy of electrons uniformly to 10 GeV
over a 3000 m path. That means that at 30 m, 300 m, and 3000 m, the
kinetic energy is 108, 109, and 1010 eV, respectively. At each of these distances,
compute the velocity, relative to light (v/c), and the mass in atomic mass units.

Solution:

From Eq. (2.10) in the text T = mc2 −moc
2 we obtain

m = T/c2 +mo. (P2.1)

From Eq. (2.5) in the text m = mo/
√

1 − v2/c2, which can be solved for v/c
to give

v

c
=

√
1 − m2

o

m2
' 1 − 1

2

m2
o

m2
, if

mo

m
<< 1. (P2.2)

(a) For an electron (mo = me) with T = 108 eV = 100 MeV, Eq. (P2.1) gives

m =
100 MeV

931.5 MeV/u
+me = 0.1074 u + 0.0005486 u = 0.1079 u.

Thenm2
e/m

2 = (0.0005486/0.1079)2 = 2.59×10−5. Finally, from Eq. (P2.2)
above, we obtain

v

c
' 1 − 1

2

m2
o

m2
= 1 − 1.29× 10−5 = 0.999987.

(b) For an electron with T = 109 eV = 1000 MeV, we similarly obtain m =
1.0741 u and v/c = 0.99999987.

(c) For an electron with T = 1010 eV = 104 MeV, we similarly obtain m =
10.736 u and v/c = 0.9999999987.

Alternative solution: Use Eq. (P2.4) developed in Problem 2-3, namely

v

c
=

{
1 −

[
mec

2

T +mec2

]2}1/2

.

2-1



2-2 Modern Physics Concepts Chap. 2

2. Consider a fast moving particle whose relativistic massm is 100ε percent greater
than its rest mass mo, i.e., m = mo(1 + ε). (a) Show that the particle’s speed
v, relative to that of light, is

v

c
=

√

1 − 1

(1 + ε)2
.

(b) For v/c << 1, show that this exact result reduces to v/c '
√

2ε.

Solution:

(a) We are given
m−mo

mo
=
mo((1 + ε) − 1)

mo
= ε.

But we also have

m−mo

mo
=

1

mo

[
mo√

1 − v2/c2
−mo

]
.

Equating these two results yields

ε =
1√

1 − v2/c2
− 1.

Solving this result for v/c gives

v

c
=

√

1 − 1

(1 + ε)2
. (P2.3)

(b) For ε << 1 we have (1 + ε)−2 ' 1− 2ε+ · · · . Substitution of the approxi-
mation into Eq. (P2.3) above gives

v

c
'
√

1 − (1 − 2ε) =
√

2ε.

3. In fission reactors one deals with neutrons having kinetic energies as high as
10 MeV. How much error is incurred in computing the speed of 10-MeV neu-
trons by using the classical expression rather than the relativistic expression
for kinetic energy?

Solution:

A neutron with rest mass mn = 1.6749288 × 10−27 kg has a kinetic energy
T = (107 eV)(1.602177× 10−19 J/eV) = 1.602177× 10−12 J. For the neutron
mnc

2 = 939.56536 MeV.

Classically:

vc =
√

2T/mn =

[
2 × 1.602177× 10−12

1.6749288× 10−27

]1/2

= 4.373993× 107 m/s.
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Relativistically: From the text we have

T = mc2 −moc
2 =

moc
2

√
1 − v2/c2

−moc
2.

Solving this equation for v yields the relativistic speed vr

vr = c

{
1 −

[
moc

2

T +moc2

]2}1/2

. (P2.4)

Substitution then gives

vr = c

{
1 −

[
939.56536

10 + 939.56536

]2}1/2

= 0.1447459c= 4.339373× 107 m/s.

Thus the percent error in the classical speed is = 100(vc − vr)/vr = 0.798%.

4. What speed (m s−1) and kinetic energy (MeV) would a neutron have if its
relativistic mass were 10% greater than its rest mass?

Solution:

We are given (m−mo)/mo ≡ ε = 0.1. From Problem 2-2

v

c
=

√

1 − 1

(1 + ε)2
=

√
1 − 1

1.12
= 0.4167.

Thus the neutron’s speed is v = 0.4167c = 1.25 × 108 m/s.

The kinetic energy can be calculated from

T = mc2 −moc
2 = moc

2

[
1√

1 − v2/c2
− 1

]
.

For moc
2 = 939.6 MeV and v/c = 0.4167 we obtain

T = 939.6

[
1√

1 − 0.41672
− 1

]
= 94.0 MeV.

5. Show that for a relativistic particle the kinetic energy is given in terms of the
particl’s momentum by

T =
√
p2c2 +m2

oc
4 −mcc

2.

Solution:

Squaring Eq. (2.17) and rearranging the terms one obtains

T 2 + 2Tmoc
2 − p2c2 = 0
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The solution of this quadratic equation gives

T =
1

2

{
−2moc

2 ±
√

4m2
oc

4 + 4p2c2
}

Only the + sign gives a physically meaningful result. Rearrangement gives the
desired realtion.

6. For a relativistic particle show that Eq. (2.21) is valid.

Solution:

From the definition of η one has

η2+1 =
P 2

(moc)2
+1 =

p2c2

(moc2)2
+1 =

(mc2)2 − (moc
2)2

(moc2)2
+1 = (W 2−1)+1 = W 2.

7. Prove the relationships given in (a) Eq. (2.19), (b) Eq. (2.20), and (c) Eq. (2.21).

Solution:

(a) From the definition of η and W one immediately has

β =
v

c
=

p

mc
=

η

W
.

(b) Because W 2 = 1 + η2, then

β2 =
(v
c

)2

=
η2

W 2
=

η2

1 + η2
.

(c) Because β = η/W and W 2 = 1 + η2, one has

β2

1 − β2
=

η2/W 2

1 − η2/W 2
=

η2/(1 + η2)

1 − η2/(1 + η2)
=

η2

(1 + η2) − η2
= η2.

From this result we see

β2

1 − β2
=

p2

m2
oc

2
=

c2p2

(moc2)2
,

but we know p2c2 = T 2 + 2Tmoc
2, so

β2

1 − β2
=
T 2 + 2Tmoc

2

(moc2)2
=

(
T

moc2

)2

+
2T

moc2
=

(
T

moc2

)2 (
1 +

2moc
2

T

)
.
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8. In the Relativistic Heavy Ion Collider, nuclei of gold are accelerated to speeds
of 99.95% the speed of light. These nuclei are almost spherical when at rest;
however, as they move past the experimenters they appear considerably flat-
tened in the direction of motion because of relativistic effects. Calculate the
apparent diameter of such a gold nucleus in its direction of motion relative to
that perpendicular to the motion.

Solution: The relativistically contracted diameter D to the uncontracted di-
ameter Do when v/c = 0.9995 is

D/Do =
√

1 − v2/c2 =
√

1 − 0.99952 =
√

1 − (1 − 0.0005)2

'
√

1 − (1 − 2 × 0.0005) =
√

0.001 = 0.031.

Hence the gold nucleus appears to flatten to 3.1% of its at-rest width.

9. Muons are subatomic particles that have the negative charge of an electron
but are 206.77 times more massive. They are produced high in the atmosphere
by cosmic rays colliding with nuclei of oxygen or nitrogen, and muons are
the dominant cosmic-ray contribution to background radiation at the earth’s
surface. A muon, however, rapidly decays into an energetic electron, existing,
from its point of view, for only 2.20 µs, on the average. Cosmic-ray generated
muons typically have speeds of about 0.998c and thus should travel only a
few hundred meters in air before decaying. Yet muons travel through several
kilometers of air to reach the earth’s surface. Using the results of special
relativity explain how this is possible. HINT: consider the atmospheric travel
distance as it appears to a muon, and the muon lifetime as it appears to an
observer on the earth’s surface.

Solution:

Muon’s Point of View: A muon, with a lifetime to = 2.20 × 10−6 s and
traveling with a speed v = 0.998c, travels on the average a distance d = vto =
0.998(3.00× 108 m/s)(2.29× 10−6 s) = 660 m.

If the muon is created at an altitude Lo, from the muon’s point of view the
distance to the surface (approaching with speed v = 0.998c) is relativistically
narrowed or contracted to a distance

L = Lo

√
1 − v2/c2 = Lo

√
1 − 0.9982 = 0.063Lo.

For example, if Lo = 10 km, L = 630 m, so that, on the average, almost half
of the muons will reach the surface.

Surface Observer’s Point of View: An observer on the earth’s surface
observes the muon approaching at a speed v = 0.998c and the muon’s lifetime
appears to expand (the muon’s internal clock appears to slow) as

t =
to√

1 − v2/c2
=

to√
1 − 0.9982

= 15.9to = 3.49× 10−5 s.

In such a lifetime, the muon can travel d = 0.998c× t = 10, 500 m so that it
can reach the surface from an altitude of 10 km before decaying.
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10. A 1-MeV gamma ray loses 200 keV in a Compton scatter. Calculate the scat-
tering angle.

Solution:

From Eq. (2.26) in the text we find

1 − cos θs = mec
2

[
1

E′
− 1

E

]

or

cos θs = 1 −mec
2

[
1

E′
− 1

E

]
.

Here mec
2 = 0.511 MeV, E′ = 0.8 MeV, and E = 1 MeV so that

cos θs = 1 − 0.511

[
1

0.8
− 1

1

]
= 0.87225.

Thus the scattering angle θs = cos−1(0.87225) = 29.3o

11. At what energy (in MeV) can a photon lose at most one-half of its energy in
Compton scattering?

Solution:

Eq. (2.26) in the text gives the basic Compton scattering relation:

1

E′
− 1

E
=

1

mec2
(1 − cos θs).

By inspection, the maximum energy loss (the smallest E′) occurs when θs = π.
Here we are told E′ = E/2

2

E
− 1

E
=

1

E
=

2

mec2
=

2

0.511 MeV
.

From this result, we find E = 0.255 MeV. Above this incident photon energy,
the minimum scattered photon energy is less than one-half of the initial energy.

12. Derive for the Compton scattering process the recoil electron energy T as a
function of the incident photon energy E and the electron angle of scattering
φe. Show that φe is never greater than π/2 radians.

Solution:

Application of the law of cosines to the triangle in text Fig. 2.5 leads to

p
λ′

2 = p
λ

2 + pe
2 − 2p

λ
pe cos φe.

Substitute E/c for p
λ
, (E−T )/c for p

λ′
, and (1/c)

√
T 2 + 2Tmec2 for pe . Then

solve for T , with the result

T =
2mec

2E2 cos2 φe

(E +mec2)2 −E2 cos2 φe
.
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Examination of the triangle in Fig. 2.5 reveals that, since p
λ′

≤ p
λ
, 0 ≤ φe ≤

π/2, confirming the commonsense observation that the target electron, initially
at rest, can recoil only in the forward hemisphere.

13. A 1 MeV photon is Compton scattered at an angle of 55 degrees. Calculate
(a) the energy of the scattered photon, (b) the change in wavelength, and (c)
the recoil energy of the electron.

Solution:

(a) From Eq. (2.26)

1

E′
=

1

E
+

1 − cos θs

mec2
=

1

1 MeV
+

1 − cos 55

0.511 MeV
= 1.835 MeV−1.

Thus the scattered photon energy is E′ = 1/1.835 = 0.545 MeV.

(b) From Eq. (2.25) we have

∆λ = λ′ − λ =
h

mec
(1 − cos θs) =

hc

mec2
(1 − cos θs)

=
(4.135× 10−21 MeV s)(3.00× 108 m/s)

0.511 MeV
(1 − cos 55)

= 1.04 × 10−12 m.

(c) The kinetic energy of the recoil electron is Er = E − E′ = 1 − 0.545 =
0.455 MeV.

14. When light with wavelengths> 475 nm = λmax impinges on of a certain metalic
surface photoelectrons are observed to be emitted. What is the work functiion
of this metal in eV?

Solution:

The frequency of light corresponding the the maximum wavelgth is νmin =
c/λmax = (2.998×108m s−1/(475×10−9 m) = 6.31×1014 s−1. From Example
2.3, the work function is A = hνmin = (4.136× 10−15 eV s)(6.31× 1014 s−1) =
2.61 eV.
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15. Consider the experimental arrangement shown in Fig. 2.3. The surface of a
sodium sample was illuminated by monochromatic light of various wavelengths,
and the retarding potentials required to stop the collection of the photoelectrons
were observed. The results are shown below.

wavelemgth (nm) 253.6 283.0 303.9 330.2 366.3 435.8
retarding potential (V) 2.60 2.11 1.81 1.47 1.10 0.57

Present these data graphically to verify the photoelectric equation eVo = hν −
A. From the graph estimate the value of Planck’s constant h and the work
function A for sodium.

Solution:

The frequency of the light is related to the wavelength by

[ν =
c

λ
=

2.997× 1017

λ (nm)
s−1.

Then plot the following data:

eVo (eV) 2.60 2.11 1.81 1.47 1.10 0.57
ν × 10−14 11.82 10.59 9.682 9.076 8.182 6.877

Fit a straight line to the plotted data as shown below.

From the least-squares fit it is found that h = 4.142× 10−15 eV s and that
the work function for sodium is A = 2.271 eV.
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16. Consider the electron scattering experiment of Davisson and Germer described
in Section 2.2.4. For the nickel crystal they used the interatomic spacing was
d = 2.15 Å = 2.15 × 10−10 m. (a) For an incident electrons with an arbitrary
energy of T eV, show that the constructive interference peaks occur at angles

θ = sin−1

(
nλ

d

)
= sin−1

(
5.705n√
T eV

)
, n = 1, 2, 3, . . . .

(b) What are the angles of the peaks when T = 54 eV (as used by Davisson
and Germer) and when T = 300 eV?

Solution:

(a) From Eq. (2.30) for non-relativistic electrons λ = h/
√

2meT . Recall the
rest mass of the electron is me/c

2 = 5.11×106 eV. Substitution of of these
values gives

θ = sin−1

(
nhc

d
√

2meT

)

= sin−1

(
n(4.136× 10−15 eV s)(2.998× 108 m s−1)

(2.15× 10−10 m)
√

(2 × 0.555× 106 eV)(T eV)

)

= sin−1

(
5.705n√
T eV

)
. (P2.5)

(b) For T = 54 eV the only angle is θ = 50.9◦ (n = 1). For T = 300 eV the
angles are θ = 19.2◦ (n = 1), 41.2◦ (n = 2), and81.2◦ (n = 3).

17. Show that the de Broglie wavelength of a particle with kinetic energy T can be
written as

λ =
h√
mo

1√
T

[
1 +

m

mo

]
−1/2

where mo is the particles’s rest mass and m is its relativistic mass.

Solution: From Eq. (2.17)

p =
1

c

√
T 2 + 2Tmoc2 =

√
T

c

√
T + 2moc2.

But T = mc2 −moc
2 so the above result can be written as

p =

√
T

c

√
mc2 +moc2 =

√
T
√
mo

√
1 + (m/mo).

Finally, use of the de Broglie relation λ = h/p in the above result gives

λ =
h√
mo

1√
T

[
1 +

m

mo

]
−1/2

.
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18. Apply the result of the previous problem to an electron. (a) Show that when the
electron’s kinetic energy is expressed in units of eV, its de Broglie wavelength
can be written as

λ =
17.35× 10−8

√
T

[
1 +

m

mo

]
−1/2

cm.

(b) For non-relativistic electrons, i.e., m ' mo, show that this result reduces
to

λ =
12.27× 10−8

√
T

cm.

(c) For very relativistic electrons, i.e., m >> mo, show that the de Broglie
wavelength is given by

λ =
17.35× 10−8

√
T

√
mo

m
cm.

Solution:

(a) Rewrite the result of Problem 2-10 as

λ =
hc√
moc2

1√
T

[
1 +

m

mo

]
−1/2

.

Substitute for the constants and use mo = me = 0.511 MeV/c2 to obtain

λ =
(4.1357× 10−15 eV s)(2.998× 1010 cm/s)√

0.5110× 106 eV

(1 +m/mo)
−1/2

√
T (eV)

=
17.35× 10−8

√
T (eV)

[
1 +

m

mo

]
−1/2

cm. (P2.6)

(b) For non-relativistic electrons m ' mo, so that 1/
√

1 + (m/mo) ' 1/
√

2,
and the above result becomes

λ =
12.27× 10−8

√
T (eV)

cm.

(c) For very relativistic particles, m >> mo so that 1/
√

1 + (m/mo) '
√
mo/m.

Eq. (2.4) above then becomes

λ =
17.35×

√
mo/m√

T (eV)
× 10−8 cm.
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19. What are the wavelengths of electrons with kinetic energies of (a) 10 eV, (b)
1000 eV, and (c) 107 eV?

Solution: From Eq. (2.17) p = (1/c)
√
T 2 + 2Tmoc2 and using the de Broglie

relation λ = h/p we obtain the de Broglie wavelength as

λ =
hc√

T 2 + 2Tmoc2
. (P2.7)

Now apply this equation to the three electron energies.

(a) Substitute moc
2 = mec

2 = 0.5110 MeV and T = 10 eV into Eq. (P2.6) to
obtain

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

102 + 2(10)(0.5110× 106) eV
= 3.88 × 10−10 m.

(b) similarly, for T = 103 eV we find

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

106 + 2(103)(0.5110× 106) eV
= 3.87 × 10−11 m.

(c) similarly, for T = 107 eV we find

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

1014 + 2(107)(0.5110× 106) eV
= 1.18 × 10−13 m.

20. Low energy neutrons are often referred to by their de Broglie wavelength as
measured in angstoms (Å) with 1 Å= 1 × 10−10 m. (a) Derive a formula that
gives the kinetic energy of such a neutron in terms of its de Broglie wavelength.
(b) What is the energy of a neutron (in eV) of a 6-Å neutron.

Solution:

(a) Equation (2.30) for a non-relativistic particle reduces to

λ = h/
√

2moT ,

which, upon solving to T gives

T =
h2

2λ2mo
.

(b) Here λ = 6 × 10−10 m and mo/c
2 = 931.49× 106 eV, so

T =
(4.135× 10−15 eV s)2

(2)(6 × 10−10m
)2(931.49× 106 eV)/(2.998× 108 m s−1)2

= 0.00229 eV.
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21. What is the de Broglie wavelength of a water molecule moving at a speed of
2400 m/s? What is the wavelength of a 3-g bullet moving at 400 m/s?

Solution:

(a) A water molecule (H2O) has a rest mass of about m = (18 u)(1.661 ×
10−27 kg/u) = 2.989× 10−26 kg.

Its momentum when traveling at 2400 m/s is p = mv = (2.989×10−26 kg)×
(2400 m/s) = 7.18× 10−23 kg m s−1 = 7.18× 10−23 J s m−1.

Thus the de Broglie wavelength of the water molecule is

λ =
h

p
=

6.626× 10−34 J s

7.18× 10−23 J s m−1 = 9.23 × 10−12 m.

(b) A 3-g bullet moving at 400 m/s has a momentum p = mv = (0.003 kg) ×
(400 m/s) = 1.2 kg m s−1 = 1.2 J s m−1 . Its de Broglie wavelength is
thus

λ =
h

p
=

6.626× 10−34 J s

1.2 J s m−1 = 5.53 × 10−34 m.

22. If a neutron is confined somewhere inside a nucleus of characteristic dimension
∆x ' 10−14 m, what is the uncertainty in its momentum ∆p? For a neutron
with momentum equal to ∆p, what is its total energy and its kinetic energy in
MeV? Verify that classical expressions for momentum and kinetic energy may
be used.

Solution:

From the uncertainty principle, ∆p∆x >∼ h/(2π) so that for ∆x ' 10−14 m

∆p =
h

2π∆x
=

6.626× 10−34 J s

2π × 10−14 m
= 1.05× 10−20 J s m−1.

A non-relativistic (classical) particle has kinetic energy T = (1/2)mv2 =
p2/(2m). For a neutron with p ' ∆p = 1.05× 10−20 J s m−1

T =
(∆p)2

2mn
=

(1.05× 10−20 J s m−1)2

2(1.6749× 10−27 kg)
= 3.32× 10−14 J

=
3.32× 10−14 J

1.602× 10−13 J/MeV
= 0.208 MeV.

This energy is well below the energy at which a neutron becomes relativistic,
and hence justifies the use of classical mechanics.

The neutron’s total energy is thus E = T +mnc
2 = 0.207 MeV + 939 MeV '

mnc
2.
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23. Repeat the previous problem for an electron trapped in the nucleus. HINT:
relativistic expressions for momentum and kinetic energy must be used.

Solution:

From the uncertainty principle, ∆p∆x >∼ h/(2π) so that for ∆x ' 10−14 m

∆p =
h

2π∆x
=

6.626× 10−34 J s

2π × 10−14 m
= 1.05× 10−20 J s m−1.

For an electron with p ' ∆p = 1.05× 10−20 J s m−1

p2c2 = (1.05× 10−20 J s m−1)2(3.00× 108 m/s)2

= (3.15× 10−12 J)2 = (19.7 MeV)2.

From the equation above Eq. (2.16) in the text, we see that p2c2 = (mc2)2 −
(moc

2)2 = E2−(moc
2)2. We use this relation to find the electron’s total energy

E as
E =

√
p2c2 + (mec2)2 =

√
19.72 + 0.5112 MeV ' 20 MeV.

Since the electron’s total energy E is related to the kinetic energy T by E =
T +mec

2 = T + 0.511 MeV, in this problem the total energy is essentially the
electron’s kinetic energy, i.e., E ' T .

24. The wavefunction for the electron in a hydrogen atom in its ground state (the
1s state for which n = 0, ` = 0, and m = 0 is spherically symmetric as shown
in Fig. 2.14. For this state the wavefuntion is real and is given by

ψ0(r) =
1√
πa3

0

exp[−r/a0],

where ao = h2εo/(4π
2mee

2) ' 5.29 × 10−11 m. This quantity is the radius of
the first Bohr orbit for hydrogen (see next chapter). Because of the spherical
symmetry of ψo, dV in Eq. (2.40) is dV = 4πr2 dr and the integral in Eq. (2.40)
can be written as

∫
∞

0

ψ0(r)ψ
∗

0(r)4πdr =
4

a3
0

∫
∞

0

r2e−αrdr,

where α ≡ 2/a0. (a) Verify that the required normalization required by
Eq. (2.40) is satisfied, i.e., the electron is somewhere in the space around the
proton. (b) What is the probability the electron is found a radial distance
r < a0 from the proton?

Solution:

(a) Integration by parts twice gives

4

a3
0

∫
∞

0

r2e−αrdr =
4

a3
0

2

α3
=

4

a3
0

a3
0

4
= 1.
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(b) Replace upper limit in the above itegral by a0. Then integration by parts
twice gives

Prob{electron is inside r ≤ a0} =
4

a3
0

∫ a0

0

r2e−αrdr

= 1 − 4

a3
0

e−αa0

{
a2
0

α
+

2a0

α2
+

2

α3

}

= 1 − 4

a3
0

e−2

{
a3
0

2
+

2a3
0

4
+

2a3
0

8

}

= 1 − 5e−2 = 0.323.

Thus the electron has a 32.3% of being at a radial distance less that a0.


