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Conditional probability

Conditioning on evidence

® A spam filter is designed by looking at commonly occurring phrases in spam. Suppose
that 80% of email is spam. In 10% of the spam emails, the phrase “free money” is used,
whereas this phrase is only used in 1% of non-spam emails. A new email has just arrived,
which does mention “free money”. What is the probability that it is spam?

Solution: Let S be the event that an email is spam and F be the event that an email
has the “free money” phrase. By Bayes’ rule,
P(F|S)P(S) 0.1-0.8 ~80/1000 _ 80

P(F) 01-08+001-02  82/1000 _ 82 ~ 09796

P(S|F) =

(® A woman is pregnant with twin boys. Twins may be either identical or fraternal (non-
identical). In general, 1/3 of twins born are identical. Obviously, identical twins must
be of the same sex; fraternal twins may or may not be. Assume that identical twins are
equally likely to be both boys or both girls, while for fraternal twins all possibilities are
equally likely. Given the above information, what is the probability that the woman’s
twins are identical?

Solution: By Bayes’ rule,

5 =1/2.

P(BB]identical) P(identical) 3
1
3 "3

P(identical| BB) = P(BB) = % 1y

N W=

According to the CDC (Centers for Disease Control and Prevention), men who smoke are
23 times more likely to develop lung cancer than men who don’t smoke. Also according
to the CDC, 21.6% of men in the U.S. smoke. What is the probability that a man in
the U.S. is a smoker, given that he develops lung cancer?

Solution: Let S be the event that a man in the U.S. smokes and L be the event that he
gets lung cancer. We are given that P(S) = 0.216 and P(L|S) = 23P(L|S). By Bayes’
rule and the law of total probability, we have

P(L|S)P(S) _ P(L|S)P(S)
(LIS)P(S) + P(L|S°)P(S°) ~ P(L|S)P(S) + 35 P(L|S)P(S¢)

P(SIL) =

We don’t know P(L|S), but it cancels out! Thus,

0.216
POSIL) = G2t + (1_0216)/23 ~ 0804

Fred is answering a multiple-choice problem on an exam, and has to choose one of n
options (exactly one of which is correct). Let K be the event that he knows the answer,
and R be the event that he gets the problem right (either through knowledge or through
luck). Suppose that if he knows the right answer he will definitely get the problem right,
but if he does not know then he will guess completely randomly. Let P(K) = p.
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(a) Find P(K|R) (in terms of p and n).

(b) Show that P(K|R) > p, and explain why this makes sense intuitively. When (if ever)
does P(K|R) equal p?

Solution:

(a) By Bayes’ rule and the law of total probability,

B P(R|K)P(K) - P
P(K|R) - P(R|K)P(K)+P(R|KC)P(KC) B p+(1 7p)/n'

(b) For the extreme case p = 0, we have P(K|R) = 0 = p. So assume p > 0. By the
result of (a), P(K|R) > p is equivalent to p + (1 — p)/n < 1, which is a true statement
since p+ (1 — p)/n < p+ 1 —p = 1. This makes sense intuitively since getting the
question right should increase our confidence that Fred knows the answer. Equality
holds if and only if one of the extreme cases n =1, p =0, or p =1 holds. If n = 1, it’s
not really a multiple-choice problem, and Fred getting the problem right is completely
uninformative; if p = 0 or p = 1, then whether Fred knows the answer is a foregone
conclusion, and no evidence will make us more (or less) sure that Fred knows the answer.

Three cards are dealt from a standard, well-shuffled deck. The first two cards are flipped
over, revealing the Ace of Spades as the first card and the 8 of Clubs as the second card.
Given this information, find the probability that the third card is an ace in two ways:
using the definition of conditional probability, and by symmetry.

Solution: Let A be the event that the first card is the Ace of Spades, B be the event
that the second card is the 8 of Clubs, and C' be the event that the third card is an ace.
By definition of conditional probability,

P(C,A,B) _P(A,B,C)

POEAB) = "paB) = PAB)
By the naive definition of probability,
|
pa,By=2__1
52! 51-52
and
3-49! 3

P(AB,C) = =0 = 55751 52"

So P(C|A, B) = 3/50.

A simpler way is to see this is to use symmetry directly. Given the evidence, the third
card is equally likely to be any card other than the Ace of Spades or 8 of Clubs, so it
has probability 3/50 of being an ace.

A hat contains 100 coins, where 99 are fair but one is double-headed (always landing
Heads). A coin is chosen uniformly at random. The chosen coin is flipped 7 times, and it
lands Heads all 7 times. Given this information, what is the probability that the chosen
coin is double-headed? (Of course, another approach here would be to look at both sides
of the coin—Dbut this is a metaphorical coin.)

Solution: Let A be the event that the chosen coin lands Heads all 7 times, and B be the
event that the chosen coin is double-headed. Then

P(A|B)P(B) 0.01 128

(A|BYP(B) + P(A[B)P(B¢) _ 0.01 + (1/2)7-0.99 _ 227 0.564.

P(B|4) =
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7.

A hat contains 100 coins, where at least 99 are fair, but there may be one that is double-
headed (always landing Heads); if there is no such coin, then all 100 are fair. Let D be
the event that there is such a coin, and suppose that P(D) = 1/2. A coin is chosen
uniformly at random. The chosen coin is flipped 7 times, and it lands Heads all 7 times.

(a) Given this information, what is the probability that one of the coins is double-
headed?

(b) Given this information, what is the probability that the chosen coin is double-
headed?

Solution:
(a) Let A be the event that the chosen coin lands Heads all 7 times, and C' be the event
that the chosen coin is double-headed. By Bayes’ rule and LOTP,
P(A|D)P(D)
(AID)P(D) + P(A| D) P(D?)’

P(D|A) = 5

We have P(D) = P(D¢) = 1/2 and P(A|D°) = 1/27, so the only remaining ingredient

that we need to find is P(A|D). We can do this using LOTP with extra conditioning

(it would be useful to know whether the chosen coin is double-headed, not just whether

somewhere there is a double-headed coin, so we condition on whether or not C' occurs):
1 1 99

P(A|D) = P(A|D,C)P(C|D) + P(A|D,C*)P(C°|D) = 100 + 7 100"

Plugging in these results, we have

P(D|A) = % — 0.604.

(b) By LOTP with extra conditioning (it would be useful to know whether there is a
double-headed coin),

P(C|A) = P(C|A,D)P(D|A) + P(C|A, D°)P(D°|A),

with notation as in (a). But P(C|A, D) = 0, and we already found P(D|A) in (a). Also,
P(C|A, D) = 128 as shown in Exercise 6 (conditioning on D and A puts us exactly in
the setup of that exercise). Thus,

128 227 128
= 297 327 327 ° 039

P(ClA)
The screens used for a certain type of cell phone are manufactured by 3 companies,
A, B, and C. The proportions of screens supplied by A, B, and C are 0.5, 0.3, and
0.2, respectively, and their screens are defective with probabilities 0.01, 0.02, and 0.03,
respectively. Given that the screen on such a phone is defective, what is the probability
that Company A manufactured it?

Solution: Let A, B, and C' be the events that the screen was manufactured by Company
A, B, and C, respectively, and let D be the event that the screen is defective. By Bayes’
rule and LOTP,

P(D|A)P(A)
(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)
B 0.01-0.5
T 0.01-0.5+0.02-0.3+0.03-0.2
~ 0.294.

P(AID) = 5
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10.

(a) Show that if events A; and A; have the same prior probability P(A1) = P(A2),
A implies B, and As implies B, then A; and Az have the same posterior probability
P(A1|B) = P(A2|B) if it is observed that B occurred.

(b) Explain why (a) makes sense intuitively, and give a concrete example.
Solution:
(a) Suppose that P(A;) = P(Az2), A; implies B, and A, implies B. Then

_ P(AL,B) _ P(A) _ P(43) _ P(42,B) _
PIB) =5 = BB ~ P(B) ~ Pm) B

(b) The result in (a) makes sense intuitively since, thinking in terms of Pebble World,
observing that B occurred entails restricting the sample space by removing the pebbles
in B¢. But none of the removed pebbles are in A; or in As, so the updated probabilities
for A1 and As are just rescaled versions of the original probabilities, scaled by a constant
chosen to make the total mass 1.

For a simple example, let A1 be the event that the top card in a well-shuffled standard
deck is a diamond, let A2 be the event that it is a heart, and let B be the event that it
is a red card. Then P(A;) = P(A2) =1/4 and P(A,|B) = P(A2|B) =1/2.

Fred is working on a major project. In planning the project, two milestones are set up,
with dates by which they should be accomplished. This serves as a way to track Fred’s
progress. Let A; be the event that Fred completes the first milestone on time, Az be
the event that he completes the second milestone on time, and As be the event that he
completes the project on time.

Suppose that P(A;11|A;) = 0.8 but P(A;41]Aj) = 0.3 for j = 1,2, since if Fred falls
behind on his schedule it will be hard for him to get caught up. Also, assume that the
second milestone supersedes the first, in the sense that once we know whether he is
on time in completing the second milestone, it no longer matters what happened with
the first milestone. We can express this by saying that A; and As are conditionally
independent given Ay and they’re also conditionally independent given AS.

(a) Find the probability that Fred will finish the project on time, given that he completes
the first milestone on time. Also find the probability that Fred will finish the project on
time, given that he is late for the first milestone.

(b) Suppose that P(A1) = 0.75. Find the probability that Fred will finish the project
on time.

Solution:

(a) We need to find P(As|A1) and P(As|AT). To do so, let’s use LOTP to condition on
whether or not Az occurs:

P(As|A1) = P(As|A1, A2)P(A2|Ar) + P(As| A, A3)P(A3|Aq).
Using the conditional independence assumptions, this becomes
P(A3]|A2)P(Az|A1) + P(As|A35)P(A5|A1) = (0.8)(0.8) + (0.3)(0.2) = 0.7.
Similarly,

P(As|AS) = P(As|A2) P(A|AS) + P(As|A5)P(A5]AS) = (0.8)(0.3) + (0.3)(0.7) = 0.45.

(b) By LOTP and Part (a),
P(As) = P(As|A1)P(A1) + P(A3]AT)P(AY) = (0.7)(0.75) 4 (0.45)(0.25) = 0.6375.
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12.

An exit poll in an election is a survey taken of voters just after they have voted. One
major use of exit polls has been so that news organizations can try to figure out as
soon as possible who won the election, before the votes are officially counted. This has
been notoriously inaccurate in various elections, sometimes because of selection bias:
the sample of people who are invited to and agree to participate in the survey may not
be similar enough to the overall population of voters.

Consider an election with two candidates, Candidate A and Candidate B. Every voter
is invited to participate in an exit poll, where they are asked whom they voted for; some
accept and some refuse. For a randomly selected voter, let A be the event that they voted
for A, and W be the event that they are willing to participate in the exit poll. Suppose
that P(W|A) = 0.7 but P(W|A®) = 0.3. In the exit poll, 60% of the respondents say
they voted for A (assume that they are all honest), suggesting a comfortable victory for
A. Find P(A), the true proportion of people who voted for A.

Solution: We have P(A|W) = 0.6 since 60% of the respondents voted for A. Let p =
P(A). Then

P(W|A)P(A) _ 0.7p
(W|A)P(A) + P(W|Ac)P(A¢) — 0.7p+0.3(1 —p)~

0.6 = P(AW) = 5

Solving for p, we obtain

9
P(A) = — ~ 0.391.
(4) =53
So actually A received fewer than half of the votes!

Alice is trying to communicate with Bob, by sending a message (encoded in binary)
across a channel.

(a) Suppose for this part that she sends only one bit (a 0 or 1), with equal probabilities.
If she sends a 0, there is a 5% chance of an error occurring, resulting in Bob receiving a
1; if she sends a 1, there is a 10% chance of an error occurring, resulting in Bob receiving
a 0. Given that Bob receives a 1, what is the probability that Alice actually sent a 17

(b) To reduce the chance of miscommunication, Alice and Bob decide to use a repetition
code. Again Alice wants to convey a 0 or a 1, but this time she repeats it two more times,
so that she sends 000 to convey 0 and 111 to convey 1. Bob will decode the message by
going with what the majority of the bits were. Assume that the error probabilities are
as in (a), with error events for different bits independent of each other. Given that Bob
receives 110, what is the probability that Alice intended to convey a 17

Solution:

(a) Let Ay be the event that Alice sent a 1, and B; be the event that Bob receives a 1.
Then
P(B1]|A1)P(A1) (0.9)(0.5)

PiA|By) = PUBiAT) P(Ar) + P(B1| A5 P(AT) — (0.9)(0.5) + (0.05)(0.5) ~ 09474

(b) Now let A; be the event that Alice intended to convey a 1, and Biio be the event
that Bob receives 110. Then
P(Bl10|A1)P(A1)
(Bi10| A1) P(A1) + P(Bi1o] AS) P(AS)
(0.9-0.9-0.1)(0.5)
(0.9-0.9-0.1)(0.5) + (0.05 - 0.05 - 0.95)(0.5)
=~ 0.9715.

P(A1|B110) = P
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Company A has just developed a diagnostic test for a certain disease. The disease
afflicts 1% of the population. As defined in Example 2.3.9, the sensitivity of the test is
the probability of someone testing positive, given that they have the disease, and the
specificity of the test is the probability that of someone testing negative, given that they
don’t have the disease. Assume that, as in Example 2.3.9, the sensitivity and specificity
are both 0.95.

Company B, which is a rival of Company A, offers a competing test for the disease.
Company B claims that their test is faster and less expensive to perform than Company
A’s test, is less painful (Company A’s test requires an incision), and yet has a higher
overall success rate, where overall success rate is defined as the probability that a random
person gets diagnosed correctly.

(a) It turns out that Company B’s test can be described and performed very simply: no
matter who the patient is, diagnose that they do not have the disease. Check whether
Company B’s claim about overall success rates is true.

(b) Explain why Company A’s test may still be useful.

(¢) Company A wants to develop a new test such that the overall success rate is higher
than that of Company B’s test. If the sensitivity and specificity are equal, how high
does the sensitivity have to be to achieve their goal? If (amazingly) they can get the
sensitivity equal to 1, how high does the specificity have to be to achieve their goal? If
(amazingly) they can get the specificity equal to 1, how high does the sensitivity have
to be to achieve their goal?

Solution:

(a) For Company B’s test, the probability that a random person in the population is
diagnosed correctly is 0.99, since 99% of the people do not have the disease. For a
random member of the population, let C' be the event that Company A’s test yields the
correct result, T" be the event of testing positive in Company A’s test, and D be the
event of having the disease. Then

P(C) = P(C|D)P(D) + P(C|D°)P(D")
(T|D)P(D) + P(T°| D) P(D*)
= (0.95)(0.01) + (0.95)(0.99)

= 0.95,

=P +P
=P + P

which makes sense intuitively since the sensitivity and specificity of Company A’s test
are both 0.95. So Company B is correct about having a higher overall success rate.

(b) Despite the result of (a), Company A’s test may still provide very useful information,
whereas Company B’s test is uninformative. If Fred tests positive on Company A’s test,
Example 2.3.9 shows that his probability of having the disease increases from 0.01 to
0.16 (so it is still fairly unlikely that he has the disease, but it is much more likely than
it was before the test result; further testing may well be advisable). In contrast, Fred’s
probability of having the disease does not change after undergoing Company’s B test,
since the test result is a foregone conclusion.

(c) Let s be the sensitivity and p be the specificity of A’s new test. With notation as in
the solution to (a), we have

P(C) =0.01s + 0.99p.
If s = p, then P(C) = s, so Company A needs s > 0.99.
If s =1, then P(C) = 0.01 + 0.99p > 0.99 if p > 98/99 ~ 0.9899.
If p =1, then P(C) = 0.01s + 0.99 is automatically greater than 0.99 (unless s = 0, in
which case both companies have tests with sensitivity 0 and specificity 1).
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Consider the following scenario, from Tversky and Kahneman:
Let A be the event that before the end of next year, Peter will have installed
a burglar alarm system in his home. Let B denote the event that Peter’s
home will be burglarized before the end of next year.

(a) Intuitively, which do you think is bigger, P(A|B) or P(A|B°)? Explain your intuition.
(b) Intuitively, which do you think is bigger, P(B|A) or P(B|A)? Explain your intuition.
(c) Show that for any events A and B (with probabilities not equal to 0 or 1), P(A|B) >
P(A|B°) is equivalent to P(B|A) > P(B|A°).

(d) Tversky and Kahneman report that 131 out of 162 people whom they posed (a)
and (b) to said that P(A|B) > P(A|B) and P(B|A) < P(B|A°). What is a plausible
explanation for why this was such a popular opinion despite (c¢) showing that it is
impossible for these inequalities both to hold?

Solution:

(a) Intuitively, P(A|B) seems larger than P(A|B°) since if Peter’s home is burglarized,
he is likely to take increased precautions (such as installing an alarm) against future
attempted burglaries.

(b) Intuitively, P(B|A°) seems larger than P(B|A), since presumably having an alarm
system in place deters prospective burglars from attempting a burglary and hampers
their chances of being able to burglarize the home. However, this is in conflict with
(a), according to (c). Alternatively, we could argue that P(B|A) should be larger than
P(B|A°), since observing that an alarm system is in place could be evidence that the
neighborhood has frequent burglaries.

(c) First note that P(A|B) > P(A|B°) is equivalent to P(A|B) > P(A), since LOTP
says that P(A) = P(A|B)P(B) + P(A|B°)P(B°) is between P(A|B) and P(A|B°) (in
words, P(A) is a weighted average of P(A|B) and P(A|B¢)). But P(A|B) > P(A) is
equivalent to P(A, B) > P(A)P(B), by definition of conditional probability. Likewise,
P(B|A) > P(B|A°) is equivalent to P(B|A) > P(B), which in turn is equivalent to
P(A,B) > P(A)P(B).

(d) It is reasonable to assume that a burglary at his home might cause Peter to install
an alarm system and that having an alarm systems might reduce the chance of a future
burglary. People with inconsistent beliefs about (a) and (b) may be thinking intuitively
in causal terms, interpreting a probability P(D|C) in terms of C' causing D. But the
definition of P(D|C) does not invoke causality and does not require C’s occurrence to
precede D’s occurrence or non-occurrence temporally.

Let A and B be events with 0 < P(AN B) < P(A) < P(B) < P(AUB) < 1. You are
hoping that both A and B occurred. Which of the following pieces of information would
you be happiest to observe: that A occurred, that B occurred, or that AU B occurred?

Solution: If C' is one of the events A, B, AU B, then

ANBNnC) P(ANB)
pP@C) P(O)

panBlc) = 2

So among the three options for C, P(AN B|C) is maximized when C is the event A.

Show that P(A|B) < P(A) implies P(A|B¢) > P(A), and give an intuitive explanation
of why this makes sense.

Solution: By LOTP,
P(A) = P(A|B)P(B) + P(A|B°)P(B°).
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18.

So P(A) is between P(A|B) and P(A|B°); it is a weighted average of these two con-
ditional probabilities. To see this in more detail, let z = min(P(A|B), P(A|B°)),y =
max(P(A|B), P(A|B¢)). Then

P(A) >zP(B)+zP(B°) ==z
and
P(A) <yP(B) +yP(B%) =y,
so x < P(A) <y. Therefore, if P(A|B) < P(A), then P(A) < P(A|B°).
It makes sense intuitively that B and B¢ should work in opposite directions as evidence

regarding A. If both B and B¢ were evidence in favor of A, then P(A) should have
already reflected this.

In deterministic logic, the statement “A implies B” is equivalent to its contrapositive,
“not B implies not A”. In this problem we will consider analogous statements in prob-
ability, the logic of uncertainty. Let A and B be events with probabilities not equal to
0or 1.

(a) Show that if P(B|A) =1, then P(A°|B°) = 1.
Hint: Apply Bayes’ rule and LOTP.

(b) Show however that the result in (a) does not hold in general if = is replaced by =.
In particular, find an example where P(B|A) is very close to 1 but P(A°|B°) is very
close to 0.

Hint: What happens if A and B are independent?
Solution:
(a) Let P(B|A) = 1. Then P(B¢|A) = 0. So by Bayes’ rule and LOTP,

P(B°|A%) P(A%) _ P(BA%) P(A°)
(Be|A°)P(A°) + P(B<|A)P(A) — P(B°|A°)P(A°)

P(A°[B°) = & = 1.

(b) For a simple counterexample if = is replaced by = in (a), let A and B be independent
events with P(A) and P(B) both extremely close to 1. For example, this can be done in
the context of flipping a coin 1000 times, where A is an extremely likely (but not certain)
event based on the first 500 tosses and B is an extremely likely (but not certain) event
based on the last 500 tosses. Then P(B|A) = P(B) = 1, but P(A°|B°) = P(A°) =~ 0.

Show that if P(A) = 1, then P(A|B) = 1 for any B with P(B) > 0. Intuitively, this says
that if someone dogmatically believes something with absolute certainty, then no amount
of evidence will change their mind. The principle of avoiding assigning probabilities of
0 or 1 to any event (except for mathematical certainties) was named Cromwell’s rule
by the statistician Dennis Lindley, due to Cromwell saying to the Church of Scotland,
“think it possible you may be mistaken”.

Hint: Write P(B) = P(BN A) + P(B N A°), and then show that P(B N A°) = 0.

Solution: Let P(A) = 1. Then P(BN A°) < P(A°) = 0 since BN A° C A°, which shows
that P(B N A°) =0. So

P(B) = P(BN A) + P(BN A°) = P(AN B).

Thus,
_ P(ANB) _P(ANB)
PAIB) = =55 = pans) ~ ©
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Explain the following Sherlock Holmes saying in terms of conditional probability, care-
fully distinguishing between prior and posterior probabilities: “It is an old maxim of
mine that when you have excluded the impossible, whatever remains, however improb-
able, must be the truth.”

Solution: Let E be the observed evidence after a crime has taken place, and let
A1, As, ..., A, be an exhaustive list of events, any one of which (if it occurred) would
serve as an explanation of how the crime occurred. Assuming that the list Aq,..., A,
exhausts all possible explanations for the crime, we have

P(A1UA2U--~UAn‘E) =1.
Sherlock’s maxim says that
P(AnlEvAfl:7 ‘iw"? ;71):17

i.e., if we have determined that all explanations other than A,, can be ruled out, then the
remaining explanation, A,, must be the truth, even if P(A,) and P(A,|FE) are small.
To prove Sherlock’s maxim, note that

P(AS,..., A, _1|E)=P(AS,..., A, _1,AL|E) + P(AS,... A} _1, Ap|E),
where the first term on the right-hand side is 0 by De Morgan’s laws. So

¢ ¢ c P( {1:7 {I.:w”a fL—l7A77«|E)
P(An|E, AS, AS, ... A5 ) = =1.
(AnB, A, Ay ) P(AS, A5, . Ac_||E)

The Jack of Spades (with cider), Jack of Hearts (with tarts), Queen of Spades (with a
wink), and Queen of Hearts (without tarts) are taken from a deck of cards. These four
cards are shuffled, and then two are dealt.

(a) Find the probability that both of these two cards are queens, given that the first
card dealt is a queen.

(b) Find the probability that both are queens, given that at least one is a queen.
(c¢) Find the probability that both are queens, given that one is the Queen of Hearts.
Solution:

(a) Let Q; be the event that the ith card dealt is a queen, for i = 1,2. Then P(Q;) = 1/2
since the ith card dealt is equally likely to be any of the cards. Also,

P(Q1,Q2) = P(Q1)P(Q2]Q1) = % _ % _ é

As a check, note that by the naive definition of probability,

P(Q1,Q2) = % = é
2
Thus,
P(Q1NQ2|Q1) = —P(gigl%) =%= %
2

(b) Continuing as in (a),

_ P(QinQ2) P(Q1NQ2) _
HONQIDUR) = 50, UQ)) ~ P@ + PQ) - P@NGs) 1+

Another way to see this is to note that there are 6 possible 2-card hands, all equally

ISIE N
I

1
6
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22.

likely, of which 1 (the “double-jack pebble”) is eliminated by our conditioning; then by
definition of conditional probability, we are left with 5 “pebbles” of equal mass.

(c¢) Let H; be the event that the ith card dealt is a heart, for ¢ = 1,2. Then

P(QiNHiNQ2)+ P(Q1N Q2N Ho)
P(Ql N Hl) + P(Q2 N HQ)

P(Q1NQ:2/(Q1NH1)U(Q2N H2)) =

11 11

,4'3+4’3

= 1 1
17T 1
1

:3,

using the fact that Q1 N Hi and Q2 N H2 are disjoint. Alternatively, note that the
conditioning reduces the sample space down to 3 possibilities, which are equally likely,
and 1 of the 3 has both cards queens.

A fair coin is flipped 3 times. The toss results are recorded on separate slips of paper
(writing “H” if Heads and “T” if Tails), and the 3 slips of paper are thrown into a hat.

(a) Find the probability that all 3 tosses landed Heads, given that at least 2 were Heads.

(b) Two of the slips of paper are randomly drawn from the hat, and both show the
letter H. Given this information, what is the probability that all 3 tosses landed Heads?

Solution:
(a) Let A be the event that all 3 tosses landed Heads, and B be the event that at least
2 landed Heads. Then

P(A,B) P(A) _ 181

PAIB) = 505y = P2 ors Heads) — 48~ 4

(b) Let C be the event that the two randomly chosen slips of paper show Heads. Then

P(AIC) = %
_ P(ClA)P(A)
~ P(C|A)P(A) + P(C|2 Heads) P(2 Heads) + P(C|1 or 0 Heads)P(1 or 0 Heads)
TR LR

N[ — ool

Alternatively, let A; be the event that the ith toss was Heads. Note that

P(A) 1/8 1
P(A|AAj) = =——F——— =" ==
(4] 2 P(A,,Aj) ~ 1/4 7 2
for any ¢ # j. Since this probability is 1/2 regardless of which 2 slips of paper were
drawn, conditioning on which 2 slips were drawn gives
1
P(A|IC) = =.
2
(® A bag contains one marble which is either green or blue, with equal probabilities. A
green marble is put in the bag (so there are 2 marbles now), and then a random marble
is taken out. The marble taken out is green. What is the probability that the remaining
marble is also green?

Solution: Let A be the event that the initial marble is green, B be the event that the
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removed marble is green, and C be the event that the remaining marble is green. We
need to find P(C|B). There are several ways to find this; one natural way is to condition
on whether the initial marble is green:

P(C|B) = P(C|B,A)P(A|B) + P(C|B, A°)P(A°|B) = 1P(A|B) + 0P(A°|B).
To find P(A|B), use Bayes’ rule:

_ P(B|A)P(A) 1/2 12 2
PAB ="y PBIAIPMA) + PBIAYP(AY) 12+ 174 8

So P(C|B) =2/3.
Historical note: This problem was first posed by Lewis Carroll in 1893.

(® Let G be the event that a certain individual is guilty of a certain robbery. In gathering
evidence, it is learned that an event F; occurred, and a little later it is also learned that
another event F> also occurred. Is it possible that individually, these pieces of evidence
increase the chance of guilt (so P(G|E,) > P(G) and P(G|E2) > P(G)), but together
they decrease the chance of guilt (so P(G|E1, E2) < P(G))?

Solution: Yes, this is possible. In fact, it is possible to have two events which separately
provide evidence in favor of G, yet which together preclude G! For example, suppose
that the crime was committed between 1 pm and 3 pm on a certain day. Let E; be
the event that the suspect was at a specific nearby coffeeshop from 1 pm to 2 pm that
day, and let E2 be the event that the suspect was at the nearby coffeeshop from 2 pm
to 3 pm that day. Then P(G|E1) > P(G), P(G|E2) > P(G) (assuming that being in
the vicinity helps show that the suspect had the opportunity to commit the crime), yet
P(G|E1NE2) < P(G) (as being in the coffechouse from 1 pm to 3 pm gives the suspect
an alibi for the full time).

Is it possible to have events Ai, As, B,C with P(A;|B) > P(A:|C) and P(A2|B) >
P(A2|C), yet P(A1 U A2|B) < P(A; U A3|C)? If so, find an example (with a “story”
interpreting the events, as well as giving specific numbers); otherwise, show that it is
impossible for this phenomenon to happen.

Solution: Yes, this is possible. First note that P(A; U A2|B) = P(A:|B) + P(A2|B) —
P(A1 N Az|B), so it is not possible if A; and Az are disjoint, and that it is crucial to
consider the intersection. So let’s choose examples where P(A; N A2|B) is much larger
than P(A; N A2|C), to offset the other inequalities.

Story 1: Consider two basketball players, one of whom is randomly chosen to shoot two
free throws. The first player is very streaky, and always either makes both or misses both
free throws, with probability 0.8 of making both (this is an extreme example chosen for
simplicity, but we could also make it so the player has good days (on which there is a
high chance of making both shots) and bad days (on which there is a high chance of
missing both shots) without requiring always making both or missing both). The second
player’s free throws go in with probability 0.7, independently. Define the events as A;:
the jth free throw goes in; B: the free throw shooter is the first player; C = B¢. Then

P(A1|B) = P(A2|B) = P(A; N A3|B) = P(A; U A3|B) = 0.8,
P(A1|C) = P(A3|C) = 0.7, P(A1 N A2|C) = 0.49, P(A; U A2|C) = 2-0.7 — 0.49 = 0.91.

Story 2: Suppose that you can either take Good Class or Other Class, but not both. If
you take Good Class, you’ll attend lecture 70% of the time, and you will understand the
material if and only if you attend lecture. If you take Other Class, you’ll attend lecture
40% of the time and understand the material 40% of the time, but because the class is
so poorly taught, the only way you understand the material is by studying on your own
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and not attending lecture. Defining the events as A;p: attend lecture; Asz: understand
material; B: take Good Class; C: take Other Class,

P(A1|B) = P(A2|B) = P(A1 n A2|B) = P(A1 U AQ‘B) =0.7,
P(A1|C) = P(A2|C) =04, P(A1 N AQ‘C) = O,P(Al U A2|C) =2-04=0.8.
(® A crime is committed by one of two suspects, A and B. Initially, there is equal
evidence against both of them. In further investigation at the crime scene, it is found

that the guilty party had a blood type found in 10% of the population. Suspect A does
match this blood type, whereas the blood type of Suspect B is unknown.

(a) Given this new information, what is the probability that A is the guilty party?

(b) Given this new information, what is the probability that B’s blood type matches
that found at the crime scene?

Solution:

(a) Let M be the event that A’s blood type matches the guilty party’s and for brevity,
write A for “A is guilty” and B for “B is guilty”. By Bayes’ rule,
P(M|A)P(A) 1/2 10

(M[A)P(A) + P(M[BYP(B) _ 1/2+ (1/10)(1/2) _ 11"

P(AIM) =

(We have P(M|B) = 1/10 since, given that B is guilty, the probability that A’s blood
type matches the guilty party’s is the same probability as for the general population.)

(b) Let C be the event that B’s blood type matches, and condition on whether B is
guilty. This gives
1 10 1 2

P(C|M) = P(C|M, A)P(AIM) + P(CIM, B)P(BIM) = 55 - 77 + 17 = 17-

(® To battle against spam, Bob installs two anti-spam programs. An email arrives,
which is either legitimate (event L) or spam (event L¢), and which program j marks as
legitimate (event Mj) or marks as spam (event M) for j € {1,2}. Assume that 10%
of Bob’s email is legitimate and that the two programs are each “90% accurate” in the
sense that P(M;|L) = P(M;|L?) = 9/10. Also assume that given whether an email is
spam, the two programs’ outputs are conditionally independent.

(a) Find the probability that the email is legitimate, given that the 1st program marks
it as legitimate (simplify).

(b) Find the probability that the email is legitimate, given that both programs mark it
as legitimate (simplify).

(c) Bob runs the 1st program and M; occurs. He updates his probabilities and then
runs the 2nd program. Let P(A) = P(A|M;) be the updated probability function after
running the 1st program. Explain briefly in words whether or not p(L|M2) = P(L|M1N
M>): is conditioning on M; N M> in one step equivalent to first conditioning on M1, then
updating probabilities, and then conditioning on Ms?

Solution:
(a) By Bayes’ rule,

_ P(Mi|L)P(L) _ 1 ' 16 _1
P(L|M;) = POL) = KR R N =3
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(b) By Bayes’ rule,

P(L|M,, M) =

P(My1, M2|L)P(L) _ () 15 9
P(My, Mz) (16)* " 1

(¢) Yes, they are the same, since Bayes’ rule is coherent. The probability of an event
given various pieces of evidence does not depend on the order in which the pieces of
evidence are incorporated into the updated probabilities.

Suppose that there are 5 blood types in the population, named type 1 through type 5,
with probabilities p1,p2,...,ps. A crime was committed by two individuals. A suspect,
who has blood type 1, has prior probability p of being guilty. At the crime scene blood
evidence is collected, which shows that one of the criminals has type 1 and the other
has type 2.

Find the posterior probability that the suspect is guilty, given the evidence. Does the
evidence make it more likely or less likely that the suspect is guilty, or does this depend
on the values of the parameters p,p1,...,ps? If it depends, give a simple criterion for
when the evidence makes it more likely that the suspect is guilty.

Solution: Let B be the event that the criminals have blood types 1 and 2 and G be the
event that the suspect is guilty, so P(G) = p. Then

P(B|G)P(G) _ p2p _ P
(BIG)P(G) + P(B|G)P(G°)  pap+2pip2(1—p)  p+2pi(l—p)’
since given G, event B occurs if and only if the other criminal has blood type 2, while

given G°, the probability is pip2 that the elder criminal and the younger criminal have
blood types 1 and 2 respectively, and also is p1p2 for the other way around.

P(G|B) = 5

Note that p2 canceled out and ps,ps,ps are irrelevant. If p1 = 1/2, then P(G|B) =
P(G). If p1 < 1/2, then P(G|B) > P(G), which means that the evidence increases the
probability of guilt. But if p; > 1/2, then P(G|B) < P(G), so the evidence decreases
the probability of guilt, even though the evidence includes finding blood at the scene of
the crime that matches the suspect’s blood type!

Fred has just tested positive for a certain disease.

(a) Given this information, find the posterior odds that he has the disease, in terms of
the prior odds, the sensitivity of the test, and the specificity of the test.

(b) Not surprisingly, Fred is much more interested in P(have disease|test positive),
known as the positive predictive value, than in the sensitivity P(test positive|have disease).
A handy rule of thumb in biostatistics and epidemiology is as follows:

For a rare disease and a reasonably good test, specificity matters much more than sen-
sitivity in determining the positive predictive value.

Explain intuitively why this rule of thumb works. For this part you can make up some
specific numbers and interpret probabilities in a frequentist way as proportions in a
large population, e.g., assume the disease afflicts 1% of a population of 10000 people
and then consider various possibilities for the sensitivity and specificity.

Solution:

(a) Let D be the event that Fred has the disease, and T be the event that he tests
positive. Let sens = P(T|D), spec = P(T°|D¢) be the sensitivity and specificity (re-
spectively). By the odds form of Bayes’ rule (or using Bayes’ rule in the numerator and
the denominator), the posterior odds of having the disease are

P(D|T) P(D) P(T|\D)

sens
= = i f .
P(DeT) ~ P(D) P(T|De) — (prior odds of D) (1 - spec)
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(b) Let p be the prior probability of having the disease and ¢ = 1 — p. Let PPV be the
positive predictive value. By (a) or directly using Bayes’ rule, we have

sens

PPV = .
sens + 1 (1 — spec)

For a concrete example to build intuition, let p = 0.01 and take sens = spec = 0.9 as
a baseline. Then PPV = 0.083. In the calculations below, we describe what happens
if sensitivity is changed while specificity is held constant at 0.9 or vice versa. If we
can improve the sensitivity to 0.95, the PPV improves slightly, to 0.088. But if we can
improve the specificity to 0.95, the PPV improves to 0.15, a much bigger improvement.
If we can improve the sensitivity to 0.99, the PPV improves to 0.091, but the other way
around the PPV improves drastically more, to 0.48. Even in the extreme case that we
can make the sensitivity 1, the PPV only improves to 0.092. But in the extreme case
that we can make the specificity 1, the PPV becomes 1, the best value possible!

To further the intuitive picture, imagine a population of 10000 people, in which 1% (i.e.,
100 people) have the disease. Again take sens = spec = 0.9 as a baseline. On average,
there will be 90 true positives (correctly diagnosed diseased people), 10 false negatives
(misdiagnosed diseased people), 8910 true negatives (correctly diagnosed healthy peo-
ple), and 990 false positives (misdiagnosed healthy people). This is illustrated in the
figure below (not to scale).

90 990

X
8% true positives

fosy .
\ \X

10 \Q;c"

100 false positives

false negatives

healthy test -
10000 people ——— 9900 people —— 8910 people

true negatives

The PPV corresponds to the number of true positives over the number of positives,
which is 90/(90+990) ~ 0.083 in this example. Increasing specificity could dramatically
decrease the number of false positives, replacing 990 by a much lower number; on the
other hand, increasing sensitivity could at best increase the number of true positives
from 90 to 100 here.

A family has two children. Let C be a characteristic that a child can have, and assume
that each child has characteristic C' with probability p, independently of each other and
of gender. For example, C' could be the characteristic “born in winter” as in Example
2.2.7. Show that the probability that both children are girls given that at least one is a
girl with characteristic C' is %7 which is 1/3 if p = 1 (agreeing with the first part of
Example 2.2.5) and approaches 1/2 from below as p — 0 (agreeing with Example 2.2.7).

Solution: Let G be the event that both children are girls, A be the event that at least
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one child is a girl with characteristic C, and B be the event that at least one child has
characteristic C. Note that GN A =GN B, and G is independent of B. Then

_ PG, 4)
P(G|A) = PlA)
P(G, B)
P(A)
P(G)P(B)
P(A)
11-(0-p)?
1-(1-%)2
1-(1-2p+p%)
4—(4—4p+ p?)
2-p
4—p°
This is 1/3 if p = 1 and approaches 1/2 as p — 0, but is less than 1/2 for all p > 0 since

i%z < % is equivalent to 4 — 2p < 4 — p, which in turn is equivalent to p > 0.

Independence and conditional independence
® A family has 3 children, creatively named A, B, and C.

(a) Discuss intuitively (but clearly) whether the event “A is older than B” is independent
of the event “A is older than C”.

(b) Find the probability that A is older than B, given that A is older than C.
Solution:

(a) They are not independent: knowing that A is older than B makes it more likely that
A is older than C| as if A is older than B, then the only way that A can be younger
than C is if the birth order is CAB, whereas the birth orders ABC and AC B are both
compatible with A being older than B. To make this more intuitive, think of an extreme
case where there are 100 children instead of 3, call them Ai,..., A100. Given that A;
is older than all of Az, As, ..., Agg, it’s clear that A; is very old (relatively), whereas
there isn’t evidence about where Aigp fits into the birth order.

(b) Writing x > y to mean that z is older than y,

P(A>B,A>C 1/3 2
P(A>BlA>C)=PA>BA>0) P O) Eﬁ:g

since P(A > B, A > C) = P(A is the eldest child) = 1/3 (unconditionally, any of the 3
children is equally likely to be the eldest).
®) Is it possible that an event is independent of itself? If so, when is this the case?

Solution: Let A be an event. If A is independent of itself, then P(A) = P(ANA) = P(A)?,
so P(A) is 0 or 1. So this is only possible in the extreme cases that the event has
probability 0 or 1.

® Consider four nonstandard dice (the Efron dice), whose sides are labeled as follows
(the 6 sides on each die are equally likely).

A:4,4,4,4,0,0

B: 3,3,3,3,3,3
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C: 6,6,2,2,2,2
D:5,5,5,1,1,1

These four dice are each rolled once. Let A be the result for die A, B be the result for
die B, etc.

(a) Find P(A > B),P(B > C),P(C > D), and P(D > A).

(b) Is the event A > B independent of the event B > C7? Is the event B > C independent
of the event C' > D? Explain.

Solution:
(a) We have
P(A>B)=P(A=4)=2/3.
P(B>C)=P(C=2)=2/3.
P(C>D)=P(C=6)+P(C=2,D=1)=2/3
P(D>A)=P(D=5+PD=1A=0)=2/3

(b) The event A > B is independent of the event B > C since A > B is the same
thing as A = 4, knowledge of which gives no information about B > C (which is the
same thing as C' = 2). On the other hand, B > C' is not independent of C' > D since
P(C>D|C=2)=1/2#1=P(C > D|C #2).

Alice, Bob, and 100 other people live in a small town. Let C' be the set consisting of the
100 other people, let A be the set of people in C who are friends with Alice, and let B
be the set of people in C' who are friends with Bob. Suppose that for each person in C,
Alice is friends with that person with probability 1/2, and likewise for Bob, with all of
these friendship statuses independent.

(a) Let D C C. Find P(A= D).
(b) Find P(A C B).

(¢) Find P(AUB = ().
Solution:

(a) More generally, let p be the probability of Alice being friends with any specific person
in C' (without assuming p = 1/2), and let k = |D| (the size of D). Then

P(A=D)=p"(1-p)"*",
by independence. For the case p = 1/2, this reduces to
P(A=D)=1/2""~17.89 x 107"
That is, A is equally likely to be any subset of C.

(b) The event A C B says that for each person in C, it is not the case that they are
friends with Alice but not with Bob. The event “friends with Alice but not Bob” has
a probability of 1/4 for each person in C, so by independence the overall probability is
(3/4)'%° ~ 3.21 x 107'3.

(c) The event AU B = C says that everyone in C is friends with Alice or Bob (inclusive
of the possibility of being friends with both). For each person in C, there is a 3/4
chance that they are friends with Alice or Bob, so by independence there is a (3/4)'%° ~
3.21 x 107 '3 chance that everyone in C' is friends with Alice or Bob.
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Suppose that there are two types of drivers: good drivers and bad drivers. Let G be
the event that a certain man is a good driver, A be the event that he gets into a car
accident next year, and B be the event that he gets into a car accident the following
year. Let P(G) = g and P(A|G) = P(B|G) = p1, P(A|G°) = P(B|G®) = pa, with
p1 < p2. Suppose that given the information of whether or not the man is a good driver,
A and B are independent (for simplicity and to avoid being morbid, assume that the
accidents being considered are minor and wouldn’t make the man unable to drive).

(a) Explain intuitively whether or not A and B are independent.
(b) Find P(G|A®).

(c¢) Find P(B|A°).

Solution:

(a) Intuitively, A and B are not independent, since learning that the man has a car
accident next year makes it more likely that he is a bad driver, which in turn makes it
more likely that he will have another accident the following year. We have that A and
B are conditionally independent given G (and conditionally independent given G°), but
they are not independent since A gives information about whether the man is a good
driver, and this information is very relevant for assessing how likely B is.

(b) By Bayes’s rule and LOTP,

o P(A°|G)P(G) (1—p1)g
PO = =50 ~ T et -p)—g)

(c¢) Condition on whether or not the man is a good driver, using LOTP with extra
conditioning:
P(B|A®%) = P(B|A°,G)P(G|A) + P(B|A®,G°)P(G°|A®)
= P(B|G)P(G|A®) + P(B|G°)P(G°|A")
=p1P(G|A) + pa2(1 = P(G|A))
_ il =p1)g+p(l —p2)(1 —g)
(I=p)g+ (1 —p2)(1—-9)

® You are going to play 2 games of chess with an opponent whom you have never
played against before (for the sake of this problem). Your opponent is equally likely to
be a beginner, intermediate, or a master. Depending on which, your chances of winning
an individual game are 90%, 50%, or 30%, respectively.

(a) What is your probability of winning the first game?

(b) Congratulations: you won the first game! Given this information, what is the prob-
ability that you will also win the second game (assume that, given the skill level of your
opponent, the outcomes of the games are independent)?

(¢) Explain the distinction between assuming that the outcomes of the games are in-
dependent and assuming that they are conditionally independent given the opponent’s
skill level. Which of these assumptions seems more reasonable, and why?

Solution:
(a) Let W; be the event of winning the ith game. By the law of total probability,

P(W1) = (0.9+ 0.5+ 0.3)/3 = 17/30.
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(b) We have P(W2|Wp) = P(Wa2,W1)/P(Wi). The denominator is known from (a),
while the numerator can be found by conditioning on the skill level of the opponent:

1 1 1
PWy,Ws) = EP(Wl, Wa|beginner) + EP(Wl, Ws|intermediate) + §P(VV17 Wa|expert).

Since W7 and W3 are conditionally independent given the skill level of the opponent,
this becomes
P(Wy, W) = (0.9 4+ 0.5 + 0.3%)/3 = 23/60.
So
23/60

(¢) Independence here means that knowing one game’s outcome gives no information
about the other game’s outcome, while conditional independence is the same statement
where all probabilities are conditional on the opponent’s skill level. Conditional inde-
pendence given the opponent’s skill level is a more reasonable assumption here. This is
because winning the first game gives information about the opponent’s skill level, which
in turn gives information about the result of the second game.

That is, if the opponent’s skill level is treated as fixed and known, then it may be
reasonable to assume independence of games given this information; with the opponent’s
skill level random, earlier games can be used to help infer the opponent’s skill level, which
affects the probabilities for future games.

(a) Suppose that in the population of college applicants, being good at baseball is
independent of having a good math score on a certain standardized test (with respect
to some measure of “good”). A certain college has a simple admissions procedure: admit
an applicant if and only if the applicant is good at baseball or has a good math score
on the test.

Give an intuitive explanation of why it makes sense that among students that the college
admits, having a good math score is negatively associated with being good at baseball,
i.e., conditioning on having a good math score decreases the chance of being good at
baseball.

(b) Show that if A and B are independent and C' = AUB, then A and B are conditionally
dependent given C' (as long as P(AN B) > 0 and P(AU B) < 1), with

P(A|B,C) < P(A|C).

This phenomenon is known as Berkson’s paradoz, especially in the context of admissions
to a school, hospital, etc.

Solution:

(a) Even though baseball skill and the math score are independent in the general pop-
ulation of applicants, it makes sense that they will become dependent (with a negative
association) when restricting only to the students who are admitted. This is because
within this sub-population, having a bad math score implies being good at baseball (else
the student would not have been admitted). So having a good math score decreases the
chance of being good in baseball (as shown in Exercise 16, if an event B is evidence in
favor of an event A, then B is evidence against A).

As another explanation, note that 3 types of students are admitted: (i) good math score,
good at baseball; (ii) good math score, bad at baseball; (iii) bad math score, good at
baseball. Conditioning on having good math score removes students of type (iii) from
consideration, which decreases the proportion of students who are good at baseball.

(b) Assume that A, B,C are as described. Then
P(A|IBNC) = P(A|B) = P(A),
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since A and B are independent and BN C = B. In contrast,

P(alc) = FEo = T8 > pa),

since 0 < P(C) < 1. Therefore, P(A|B,C) = P(A) < P(A|C).

We want to design a spam filter for email. As described in Exercise 1, a major strategy
is to find phrases that are much more likely to appear in a spam email than in a non-
spam email. In that exercise, we only consider one such phrase: “free money”. More
realistically, suppose that we have created a list of 100 words or phrases that are much
more likely to be used in spam than in non-spam.

Let W; be the event that an email contains the jth word or phrase on the list. Let
p = P(spam), p; = P(Wj|spam),r; = P(Wj|not spam),

where “spam” is shorthand for the event that the email is spam.

Assume that Wi, ..., Wigo are conditionally independent given that the email is spam,
and conditionally independent given that it is not spam. A method for classifying emails
(or other objects) based on this kind of assumption is called a naive Bayes classifier.
(Here “naive” refers to the fact that the conditional independence is a strong assumption,
not to Bayes being naive. The assumption may or may not be realistic, but naive Bayes
classifiers sometimes work well in practice even if the assumption is not realistic.)

Under this assumption we know, for example, that
P(W17 W27 W387 W4?7 R W1C00|Spam) = p1p2(1 7]73)(1 - p4) e (1 - plOO)'

Without the naive Bayes assumption, there would be vastly more statistical and com-
putational difficulties since we would need to consider 2'%° x 1.3 x 10%° events of the
form A1 N Az ---N Aigo with each A; equal to either W; or ch. A new email has just
arrived, and it includes the 23rd, 64th, and 65th words or phrases on the list (but not
the other 97). So we want to compute

P(Spa’m|W1c7 HR) WZCZa W237 W2847 U W6637 W647 W657 W6667 RS chOO)'

Note that we need to condition on all the evidence, not just the fact that WasNWeaNWes
occurred. Find the conditional probability that the new email is spam (in terms of p
and the p; and r;).
Solution:
Let

E:WfﬁﬁWQCQﬂW23ﬁW§4ﬂﬂngﬂWMﬂWGsﬁWgGﬁﬁWfoo
be the observed evidence. By Bayes’ rule, LOTP, and conditional independence,

P(E|spam)P(spam)

P FE) =
(spam|£) P(E|spam)P(spam) + P(FE|non-spam)P(non-spam)
- @
ap+b(1 —p)’

where
a=(1-p1)...(1—=p2)p2s(l —p2a)...(1—pes)peapes(L — pes) - - - (1 — pioo),

b:(1—7”1)...(1—7"22)7”23(1—7”24)...(1—7"63)7”647”65(1—7”66)...(1—7”‘100).
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38.

39.

Monty Hall

® (a) Consider the following 7-door version of the Monty Hall problem. There are 7
doors, behind one of which there is a car (which you want), and behind the rest of which
there are goats (which you don’t want). Initially, all possibilities are equally likely for
where the car is. You choose a door. Monty Hall then opens 3 goat doors, and offers
you the option of switching to any of the remaining 3 doors.

Assume that Monty Hall knows which door has the car, will always open 3 goat doors
and offer the option of switching, and that Monty chooses with equal probabilities from
all his choices of which goat doors to open. Should you switch? What is your probability
of success if you switch to one of the remaining 3 doors?

(b) Generalize the above to a Monty Hall problem where there are n > 3 doors, of which
Monty opens m goat doors, with 1 <m <n — 2.

Solution:

(a) Assume the doors are labeled such that you choose door 1 (to simplify notation),
and suppose first that you follow the “stick to your original choice” strategy. Let S be
the event of success in getting the car, and let C; be the event that the car is behind
door j. Conditioning on which door has the car, we have

P(S) = P(S|C1)P(C1) + -+ + P(S|C7)P(C7) = P(Cy) = %

Let M;; i, be the event that Monty opens doors i, j, k. Then

P(S) = P(S|Miji) P(Myy)

i3,k
(summed over all 4, j, k with 2 <14 < j < k < 7.) By symmetry, this gives

1
P(S|Mijr) = P(5) = =
for all 4, j, k with 2 < i < j < k < 7. Thus, the conditional probability that the car is
behind 1 of the remaining 3 doors is 6/7, which gives 2/7 for each. So you should switch,

thus making your probability of success 2/7 rather than 1/7.

(b) By the same reasoning, the probability of success for “stick to your original choice”
is %, both unconditionally and conditionally. Each of the n — m — 1 remaining doors
has conditional probability m of having the car. This value is greater than %, SO

you should switch, thus obtaining probability n—1

n—m—1)n

of success (both conditionally
and unconditionally).

(® Consider the Monty Hall problem, except that Monty enjoys opening door 2 more
than he enjoys opening door 3, and if he has a choice between opening these two doors,
he opens door 2 with probability p, where £ < p < 1.

To recap: there are three doors, behind one of which there is a car (which you want),
and behind the other two of which there are goats (which you don’t want). Initially,
all possibilities are equally likely for where the car is. You choose a door, which for
concreteness we assume is door 1. Monty Hall then opens a door to reveal a goat, and
offers you the option of switching. Assume that Monty Hall knows which door has the
car, will always open a goat door and offer the option of switching, and as above assume
that if Monty Hall has a choice between opening door 2 and door 3, he chooses door 2
with probability p (with % <p<1).

(a) Find the unconditional probability that the strategy of always switching succeeds
(unconditional in the sense that we do not condition on which of doors 2 or 3 Monty
opens).
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(b) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 2.

(c) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 3.

Solution:

(a) Let C; be the event that the car is hidden behind door 7 and let W be the event
that we win using the switching strategy. Using the law of total probability, we can find
the unconditional probability of winning:

PW) = P(W|C1)P(Cy)+ P(W|C2)P(C2) + P(W|C3)P(Cs)
0-1/3+1-1/34+1-1/3=2/3.

(b) A tree method works well here (delete the paths which are no longer relevant after
the conditioning, and reweight the remaining values by dividing by their sum), or we
can use Bayes’ rule and the law of total probability (as below).

Let D; be the event that Monty opens Door i. Note that we are looking for P(W|D3),
which is the same as P(C3|D2) as we first choose Door 1 and then switch to Door 3. By
Bayes’ rule and the law of total probability,

pcipy = PLACIHC
P(D;|C5)P(Cs)
P(D2|C1)P(C1) + P(D2|C2)P(C2) + P(D2|Cs)P(Cs)
1-1/3
p-1/3+0-1/3+1-1/3
1

1+p’

(¢) The structure of the problem is the same as Part (b) (except for the condition that
p > 1/2, which was not needed above). Imagine repainting doors 2 and 3, reversing
which is called which. By Part (b) with 1 — p in place of p, P(C2|D3) = = ;1

[ S
1+(1-p) 2—-p°
The ratings of Monty Hall’s show have dropped slightly, and a panicking executive
producer complains to Monty that the part of the show where he opens a door lacks
suspense: Monty always opens a door with a goat. Monty replies that the reason is so
that the game is never spoiled by him revealing the car, but he agrees to update the
game as follows.

Before each show, Monty secretly flips a coin with probability p of Heads. If the coin
lands Heads, Monty resolves to open a goat door (with equal probabilities if there is
a choice). Otherwise, Monty resolves to open a random unopened door, with equal
probabilities. The contestant knows p but does not know the outcome of the coin flip.
When the show starts, the contestant chooses a door. Monty (who knows where the
car is) then opens a door. If the car is revealed, the game is over; if a goat is revealed,
the contestant is offered the option of switching. Now suppose it turns out that the
contestant opens door 1 and then Monty opens door 2, revealing a goat. What is the
contestant’s probability of success if he or she switches to door 3?7

Solution: For j = 1,2,3, let C; be the event that the car is behind door j, G; = C7,
and M; be the event that Monty opens door j. Let R be the event that Monty is in
“random mode” (i.e., the coin lands Tails). By the law of total probability,

P(C5|M2,G2) = P(R|M2,G2)P(C3| M2, G2, R) + P(R°|Ma,G2) P(Cs| M2, G2, R%),
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41.

where P(Cs|Ma2, G2, R°) = 2/3 (since given R°, Monty is operating as in the usual
Monty Hall problem) and
_ P(M3,G2|Cs, R)P(C3|R)

P(C3|Ma2, G2, R) = P(Ms,G2|R) B

ISP NI
Wl |w|=
\V]

For the denominator above, note that M> and G2 are conditionally independent given
R; for the numerator, note also that P(M2, G2|C3, R) = P(M2|Cs, R) = P(Mz|R). The
posterior probability that Monty is in random mode is

P(M;, Go|R)P(R) 3 3(1-p) 2(1-p)

P(R|Ma,Gs) = - _
(B[ Mz, G2) P(Ma,Go|R)P(R) + P(M2,G2|R)P(R°) — 3. 2(1—p)+ Lp 2+p

again since My and G2 are conditionally independent given R, and since given R®, M>
implies G2. Putting these results together, we have

_1(20-p)\ 2(, 20-p\ _lip
P(03\M2,02>—2( (o )+3(1 ()i

You are the contestant on the Monty Hall show. Monty is trying out a new version of
his game, with rules as follows. You get to choose one of three doors. One door has a car
behind it, another has a computer, and the other door has a goat (with all permutations
equally likely). Monty, who knows which prize is behind each door, will open a door (but
not the one you chose) and then let you choose whether to switch from your current
choice to the other unopened door.

Assume that you prefer the car to the computer, the computer to the goat, and (by
transitivity) the car to the goat.

(a) Suppose for this part only that Monty always opens the door that reveals your less
preferred prize out of the two alternatives, e.g., if he is faced with the choice between
revealing the goat or the computer, he will reveal the goat. Monty opens a door, revealing
a goat (this is again for this part only