
Solutions for Chapter 2

2.1. The returns are given by Rt = (Pt − Pt−1)/Pt−1, t = 1, 2, 3, 4. Hence,

R1 = 0.0400, R2 = −0.0192, R3 = 0.0784, R4 = 0.0091.

The log-returns are given by rt = log(1 +Rt), t = 1, 2, 3, 4. Hence,

r1 = 0.0392, r2 = −0.0194, r3 = 0.0076, r4 = 0.0091.

2.2. Returns are given by Rt = (Pt − Pt−1)/Pt−1 so that

Rt =
Pt − Pt−1
Pt−1

− 1 =
a exp(bt)− a exp (b(t− 1))

a exp (b(t− 1))
= exp(b)− 1.

The log-returns are given by rt = log(1 +Rt) so that

rt = log(exp(b)) = b.

2.3. Using a Taylor’s series approximation, log(1 + x)
.
= x for small |x|. Hence,

rt = log(1 +Rt)
.
= Rt for small |Rt|.

Including an additional term in the Taylor’s series,

log(1 + x)
.
= x− 1

2
x2

for small |x|. Hence,

rt = log(1 +Rt)
.
= Rt −

1

2
R2
t for small |Rt|.

2.4. Returns are given by Rt = (Pt +Dt)/Pt−1 − 1. Hence,

R1 = 0.200, R2 = 0.125, R3 = 0.080.

2.5. Adjusted prices are given by P̄3 = P3 = $5.40,

P̄2 =

(
1− D3

P2

)
P2 = P2 = $4.80

and

P̄1 =

(
1− D2

P1

)(
1− D3

P2

)
P1 =

(
1− 0.40

4.00

)
4.00 = $3.60.
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2.6. (a) The single-period return at time t is given by

Rt =
Pt +Dt

Pt−1
− 1 =

Pt + αPt−1
Pt−1

− 1 =
Pt
Pt−1

− 1 + α.

(b) Let P̄t, t = 0, 1, 2, . . . , T denote the sequence of adjusted prices. Then P̄T = PT ,

P̄T−1 =

(
1− DT

PT−1

)
PT−1 = (1− α)PT−1,

P̄T−2 =

(
1− DT

PT−1

)(
1− DT−1

PT−2

)
PT−2 = (1− α)2PT−2

and so on. The general relationship is

P̄T−k = (1− α)kPT−k.

2.7. Consider

Cov(Yt +Xt, Ys +Xs) = Cov(Yt, Ys) + Cov(Xt, Xs) + Cov(Yt, Xs) + Cov(Ys, Xt).

Let γY denote the covariance function of {Yt : t = 1, 2, . . .} and let γX denote the covariance
function of {Xt : t = 1, 2, . . .}. Since these processes are both weakly stationary,

Cov(Yt +Xt, Ys +Xs) = γY (|t− s|) + γX(|t− s|) + Cov(Yt, Xs) + Cov(Ys, Xt).

However, since we do not know anything about the covariance of Yt and Xs, it does not follow
that the process Y1 +X1, . . . is weakly stationary. For instance, if Yt and Xs are uncorrelated
for all t, s, then it is weakly stationary. However, if the correlation of Yt and Xs is 1/2 if
t = s = 1 and 0 otherwise, then the process is not weakly stationary.

2.8. (a) The mean function is given by

E(Yt) = E(Xt −Xt−1) = E(Xt)− E(Xt−1) = 0

and the variance function is given by

Var(Yt) = Var(Xt −Xt−1) = Var(Xt) + Var(Xt−1)− 2Cov(Xt, Xt−1) = 2σ2 − 2γ(1).

(b) The covariance function is given by

Cov(Yt, Ys) = Cov(Xt −Xt−1, Xs −Xs−1)

= Cov(Xt, Xs) + Cov(Xt−1, Xs−1)− Cov(Xt−1, Xs)− Cov(Xt, Xs−1)

= 2γ(|t− s|)− γ(|t− s− 1|)− γ(|t− s+ 1|).
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(c) The mean and variance functions of the process are constant. Consider the term in the
covariance function

γ(|t− s− 1|) + γ(|t− s+ 1|).

If t = s this is 2γ(|1|) = 2γ(|t− s|+ 1). If t ≥ s+ 1, then

γ(|t− s− 1|) + γ(|t− s+ 1|) = γ(t− s− 1) + γ(t− s+ 1) = γ(|t− s| − 1) + γ(|t− s|+ 1).

Similarly, if t ≤ s− 1,

γ(|t− s− 1|) + γ(|t− s+ 1|) = γ(s+ 1− t) + γ(s− 1− t) = γ(|t− s|+ 1) + γ(|t− s| − 1).

It follows that the covariance of Yt, Ys is a function of |t − s| and, hence, the process is
weakly stationary.

2.9. (a) E(Xt) = E(ZZt) = E(Z)E(Zt) = 0; hence, the mean function is 0. Let µ = E(Zt)
and σ2 = Var(Zt). Since E(X2

t ) = E(Z2Z2
t ) = E(Z2)E(Z2

t ) = (σ2 + µ2), the variance
function of the process is σ2 + µ2.

(b) Since E(Xt) = 0 for all t,

Cov(Xt, Xs) = E(XtXs) = E(Z2ZtZs) = E(Z2)E(ZtZs) = 0.

(c) Since the mean and variance functions are constant and the X1, X2, . . . are uncorrelated,
it follows that {Xt : t = 1, 2, . . .} is a white noise process. Hence, it is also weakly
stationary.

2.10. Since E(rt) does not depend on t, clearly E(r̃t) does not depend on t. Let σ2 = Var(rt)
and consider Var(r̃t). Using the fomula for the variance of a sum,

Var(r̃t) = 21σ2 + 2
∑
i<j

Cov(r̃21(t−1)+i, r̃21(t−1)+j)

where the sum in this expression is over all i, j from 1 to 21 such that i < j. Note that, since
{rt : t = 1, 2, . . .} is weakly stationary,

Cov(r̃21(t−1)+i, r̃21(t−1)+j) = γ(|i− j|)

where γ(·) is the autocovariance function of {rt : t = 1, 2, . . .}. It follows that Var(r̃t) does
not depend on t.

Now consider Cov(r̃t, r̃s) for t 6= s. Note that

Cov(r̃t, r̃s) =
21∑
j=1

21∑
i=1

Cov(r21(t−1)+j, r21(s−1)+i).

Since, for any i, j,

Cov(r21(t−1)+j, r21(s−1)+i) = γ(|21(t− s) + j − i|)
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for any j = 1, 2, . . . , 21,

Cov(r̃t, r̃s) =
21∑
j=1

21∑
i=1

γ(|21(t− s) + j − i|),

which clearly depends on t, s only through t− s. By symmetry of the covariance operator,

21∑
j=1

21∑
i=1

γ(|21(t− s) + j − i|) =
21∑
j=1

21∑
i=1

γ(|21(s− t) + j − i|)

so that Cov(r̃t, r̃s) depends on t, s only through |t − s|. It follows that {r̃t : t = 1, 2, . . .} is
weakly stationary.

2.11. Since E(Xj) = µ, j = 1, . . . , n,

E(Yk) =
1

w

k+w∑
j=k+1

E(Xj) =
1

w
wµ = µ, k = 1, . . . , n− w.

Since X1, . . . , Xn are independent with Var(Xj) = σ2, j = 1, . . . , n,

Var(Yk) =
1

w2

k+w∑
j=k+1

Var(Xj) =
1

w2
wσ2 =

1

w
σ2, k = 1, . . . , n− w.

Consider Cov(Yi, Yk), where i < k. If k > i+w, then Yi and Yk have no terms in common so
that Cov(Yi, Yk) = 0. Otherwise, the sums

i+w∑
j=i+1

Xj and
k+w∑
`=k+1

X`

have terms Xk+1, . . . , Xi+w in common so that

Cov(Yi, Yk) =
i− k + w

w2
σ2.

Since E(Yk) and Var(Yk) are constant and Cov(Yi, Yk) depends only on k− i, it follows that
the process Y1, . . . , Yn−w is weakly stationary with mean function µ and variance function
σ2/w.

The correlation of Yi and Yk is

((i− k + w)/w2)σ2

σ2/w
= 1− k − i

w

so that the correlation function of the process is

ρ(h) = 1− |h|
w
, h = 1, 2, . . . .



2 Solutions for Chapter 2 11

2.12. (a) Let µX = E(Xt), σ
2
X = Var(Xt), µY = E(Yt), and σ2

Y = Var(Yt). Then

E(Xt + Yt) = E(Xt) + E(Yt) = µX + µY , t = 1, 2, . . . ,

Var(Xt + Yt) = Var(Xt) + Var(Yt) = σ2
X + σ2

Y , t = 1, 2, . . .

and for t 6= s,

Cov(Xt + Yt, Xs + Ys) = Cov(Xt, Xs) + Cov(Xt, Ys) + Cov(Yt, Xs) + Cov(Yt, Ys) = 0.

It follows that {Xt + Yt : t = 1, 2, . . .} is a weak white noise process.

(b) Using the same notation as in part (a),

E(XtYt) = E(Xt)E(Yt) = µXµY , t = 1, 2, . . . ;

note that
E{(XtYt)

2} = E(X2
t )E(Y 2

t ) = (µ2
X + σ2

X)(µ2
Y + σ2

Y )

so that
Var(XtYt) = (µ2

X + σ2
X)(µ2

Y + σ2
Y )− µ2

Xµ
2
Y , t = 1, 2, . . . .

Similarly, for t 6= s,
E(XtYtXsYs) = µXµY µXµY = µ2

Xµ
2
Y

so that
Cov(XtYt, XsYs) = µ2

Xµ
2
Y − (µXµY )2 = 0.

It follows that {XtYt : t = 1, 2, . . .} is a weak white noise process.

2.13. (a) The following R commands may be used to download the necessary price data.

> library(tseries)

> x<-get.hist.quote(instrument="PZZA", start="2012-12-31", end="2015-12-31",

+ quote="AdjClose", compression="d")

> pzza0<-as.vector(x)

(b) The returns corresponding to the prices downloaded in part (a) may be calculated using
the commands

> length(pzza0)

[1] 757

> pzza<-(pzza0[-1]-pzza0[-757])/pzza0[-757]

(c) The summary statistics for the returns are

> summary(pzza)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1210 -0.0074 0.0010 0.0011 0.0097 0.0804
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FIGURE 2.1

Plot in Exercise 2.13

(d) The time series plot of the returns may be constructed using the commands

> plot(pzza, type="l", xlab="Time", ylab="Daily Return")

> title(main="Time Series Plot of Daily Returns on Papa John’s Stock")

The plot is given in Figure 2.1.

2.14. (a) The following R commands may be used to download the necessary price data.

> library(tseries)

> x<-get.hist.quote(instrument="PZZA", start="2010-12-31", end="2015-12-31",

+ quote="AdjClose", compression="m")

> pzza0<-as.vector(x)

(b) The returns corresponding to the prices downloaded in part (a) may be calculated using
the commands

> length(pzza0)

[1] 61

> pzza.m<-(pzza0[-1]-pzza0[-61])/pzza0[-61]

(c) The summary statistics are
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> summary(pzza.m)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1780 -0.0072 0.0216 0.0265 0.0696 0.1890

(d) The time series plot of the returns may be constructed using the commands

> plot(pzza.m, type="l", xlab="Time", ylab="Monthly Return")

> title(main="Time Series Plot of Monthly Returns on Papa John’s Stock")

The plot is given in Figure 2.2.
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FIGURE 2.2

Plot in Exercise 2.14

2.15. The running means may be calculated and the plot constructed using the following
commands.

> library(gtools)

> pzza.rmean<-running(pzza.m, fun=mean, width=12)

> mean(pzza.m) + 2*sd(pzza.m)/(12^.5)

[1] 0.0677

> mean(pzza.m) - 2*sd(pzza.m)/(12^.5)

[1] -0.0147

> plot(pzza.rmean, type="l", ylim=c(-.02, .07), xlab="Time", ylab="Return")
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> title(main="Running Means for Monthly Returns on Papa John’s Stock")

> lines(1:49, rep(0.0677,49), lty=2)

> lines(1:49, rep(-0.0147,49), lty=2)

The plot is given in Figure 2.3. According to this plot, there is no evidence of non-
stationarity in the returns.
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FIGURE 2.3

Plot in Exercise 2.15

2.16. The running standard deviations may be calculated and the plot may be constructed
using the following commands.
> pzza.rsd<-running(pzza.m, fun=sd, width=12)

> log(sd(pzza.m)) + (2/11)^.5

[1] -2.21

> log(sd(pzza.m)) - (2/11)^.5

[1] -3.07

> plot(log(pzza.rsd), type="l", ylim=c(-3.6, -2), ylab="log of running sd",

+ xlab="time")

> title(main="Log of Running SDs of Returns on Papa John’s Stock")

> lines(1:49, rep(-2.21, 49), lty=2)

> lines(1:49, rep(-3.07, 49), lty=2)

The plot is given in Figure 2.4. According to this plot, there is some evidence of non-
stationarity of the returns. There is a relatively long period of relatively small variability, as
well as brief periods of relatively large variability.
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FIGURE 2.4

Plot in Exercise 2.16

2.17. The autocorrelation function based on the daily returns may be calculated using the
command

> print(acf(pzza, lag.max=20))

Autocorrelations of series pzza, by lag

0 1 2 3 4 5 6 7 8 9 10

1.000 -0.011 -0.013 0.050 -0.013 -0.061 0.005 -0.036 0.062 0.052 -0.007

11 12 13 14 15 16 17 18 19 20

-0.027 0.044 -0.016 -0.023 0.027 0.029 -0.018 0.032 0.008 -0.028

The plot is given in Figure 2.5.
The estimated autocorrelation function based on the monthly returns is given by

> print(acf(pzza.m, lag.max=12))

Autocorrelations of series pzza.m, by lag

0 1 2 3 4 5 6 7 8 9 10

1.000 0.167 -0.009 -0.061 -0.057 -0.179 -0.146 -0.053 0.103 -0.218 -0.064

11 12

0.049 0.015
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ACF for Daily Returns in Exercise 2.17

The plot is given in Figure 2.6. The autocorrelations are all small and, hence, the results
are consistent with the assumption that the returns are uncorrelated random variables.
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ACF for Monthly Returns in Exercise 2.17
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2.18. The daily returns on Papa John’s stock are stored in the R variable pzza. To construct
a normal probability plot of these data, we may use the commands

> qqnorm(pzza)

> abline(a=mean(pzza), b=sd(pzza))

The plot is given in Figure 2.7. The plot is very similar to the one in Figure 2.11 in the
text; it suggests that the distribution of the daily returns on Papa John’s stock is long-tailed
relative to a normal distribution.
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FIGURE 2.7

Q-Q Plot for Daily Returns in Exercise 2.18

The monthly returns on Papa John’s stock are stored in the R variable pzza.m. To
construct a normal probability plot of these data, we may use the commands

> qqnorm(pzza.m)

> abline(a=mean(pzza.m), b=sd(pzza.m))

The plot is given in Figure 2.8. The plot suggests that the distribution of the monthly
returns on Papa John’s stock is more nearly normal than is the distribution of daily returns,
although there is some evidence of asymmetry, with a slightly-long left tail.
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FIGURE 2.8

Q-Q Plot for Monthly Returns in Exercise 2.18


