Solutions 3

Chapter 2

2.1

a. Let K = I[y(z)]J[y(z)]. Then from the definition of variation and the
product rule, we obtain

d d
0K = aK(yo +ah)a=o = E[I(yo + ah)J(yo + ah)]a=o

d
=I(yo + Oéh)azoa[c](yo + ah)]a=o+

d
J(yo + ah)a=o—

s [I(yo + ah)]a=0

[J(yo + ah)]a=o + J(yo) d

d
= I(yo) @

@ [I(yo + Oéh)]azo

= I(y0)0J (yo; h) + J (y0)01 (yo; h)

I
b. Let K = J[[Z((i))]] where J[y(z)] # 0. Then from the definition of varia-
tion and the product rule, we obtain
_i{f(y(H-ah)]
da | J(yo +ah) |, _,

d
0K = aK(yo + ah)a=o

d 1
=1 h) o= -
(yo + ah) =040 |:J(y0—|—0¢h)] +
1 d

T+ ah),,_,da —[I(yo + ah)]az

__ I(p) d d
= — [J(y(?)]g @[J(yo + Oéh)]azo + ma[‘[(yo + ah)]a:O
_ 100) 5 5y 4 S5 R)
T o+ =500

2.2 Substituting Equation (1.11) into Equation (1.12), we get

L
klyp 4/€2 (y() — y)2p2
I=yy+ TS/[ dz
vo 2y0 — (2y0 — y)?




4 Optimal Control for Chemical Engineers

Then the variation of I is given by

klyp kly
o= [{ [ - o [
2yo -y (2y0 —y)? Y7 2g0 -y

8ka(yo —y)P? | 8ka(yo —y)*>P?
[_ (2y0 — y)? (2y0 —y)3 }5%
8k2(yo — y)* P ;
[ (2y0 —y)? ]Mj} d

2.3 The augmented functional is given by

T

. Fay  (Fo+ Fy)x . Fyy
=7 - — —ky _ _
J +/{,\1{ T+ v 7 kyxy| 4+ Mo | —y + v

(Fx+Fy)y
1%

(Fx +Fy)MO

— kxxy — kpyuo] + A3 {—/10 + kxzy — v

(Fx + Fy),ul

+ M [—ﬂl + kxzy — v

+%W4+&Fm+@w—

(Fx + Fy)ﬂ2

% + kpy(po + 2u1)] } dt

where \;s are the Lagrange multipliers. The variation of J is then given by

,Ul Nl Hl

5J=2[1/“0“2 dt — D*

2
/(Mg Opo — MOM25 + 5#2) dt +
0

Fe+ Fy)

/ {)\1 [—&t + %6Fx - %(5& 4oy - 82 — ke (20y + yéx)]
0

o {—5;; + U5k, — L(6F, + 6F,) - (FLVFy)(sy ~ ke (20y + y07)

—kp (pody + yduo)] + A3 [—5;10 + kx(xdy + yox) — %((SFX + 0Fy)

C(F+Fy)

- 5,10} + M [ Sty + ke (20y + yoz) — %(m +0F,)
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Fo+F, -
—(7‘/},)5/1*1 + kp (kody + y5uo)] +Xs [ = Otz + k(20y + yox)

- %(51’)« + 0Fy) + kp(pto + 201)0y + kpy(dpo + 25#1)} } dt

2.4 The augmented functional is given by
te 9
re —ax® — pfx x
s [ (o 0 ) (i 2 )
0

where ;s are the Lagrange multipliers. The variation of J is then given by

r—2ar —f3
T

te
5. = / [mau A (—&t NRLLLTE 5z + u&y) +
T
0

A2 (—53'/ + Eéa: — ,u5y>] dt
T

2.5 Expand each term involving the variation of a derivative using integra-
tion by parts. For example,

T T

/Aldx'dt: A0z —/mxdt
0 0

Applying the above expansion to Exercise 2.3, we obtain
T T

1 1 2
5J=2|- / HOP2 4t — D+ | = /(“—gauo — 2P S + “—gaug) dt +
i K1 Ty M1 MY M1

/ {/\1 {%m ~ C(OF +0R,) - BB s g (woy + y5a:)]
0

(Fx + Fy)

+ o {%51@ - %(51& +OF,) — 8y — ke (28y + yoz)

—kp (pody + yéuo)] + A3 [kx(xéy +yox) — 7(5Fx +0Fy)
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Fy+ Fy

géuo] + M\ [ (28y + yox) — EL(F, + 6F,)
1% 1%

F+ Fy

%5#1 + kp(pody + yé,uo)} + A5 |:kx($5y + yor)

— L2 OB+ 8F,) + iy 1o + 2411)3y + by (G0 + 20701)|
+ /(5\15$ + Aody 4 Aadpio + Aadp + ;\55H2) dt
0

- [Alax  Aody 4+ Aadpio + Aadpin + Ag,aug} i

A=0

where the last group of terms denoted by A is zero due to periodic conditions.
Thus, if 2(0) = z(7), then dx(0) = dx(7) and the corresponding terms in A
vanish.

In a similar manner, we obtain for Exercise 2.4,
tg
u -2 -
5 = / [2u5u Y (ﬂau pro2ar by u&y) +
T T
0

Ao (é&c - uéy)] dt + )\1595 + )\2<5y dt — [mx + A25y}
T

o\

where we have utilized the fact that 6z(0) = dy(0) = 0 since z(0) and y(0)
are specified, i.e., fixed.

2.6 The augmented objective functional is given by

T T2 T R A
=[|l1—=]| at M-T+— (T, +rT,,
J /[ TJ +//[ +7"Pcp( trh)
0 0 70

FC,(Ty, ~T)  AH

— | drdt
Cp pCp ]
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where the Lagrange multiplier A\ depends on ¢ as well as r. The variation of
J is given by

T T R
T : k
6J = —2/(1— i)det—k//)\[—&T—k Tpcp(éTr—Fr&Trr)—i—
0 0 70

Cy
Cp
Using integration by parts,

T R R T R R T
//A&Tdrdt://AéTdtdr:/ [A&T}O dz—//;\éTdtdz
0 70 ro O — ro O

Kn—)ﬁuFﬂwﬁﬁqu&

r0
zero due to

periodicity
T R
~ / / AOT dr dt
0 ro
7 R T T R
// FA 0T, drdt—/ // Ar 0T drdt
rpCp " N rpC rpChp rzpC
0 7o 0 To
T R o
[ [ =[] it
PLlp
0 7o 0 7o

[ [l o [ fms

Substituting the last three equations into the expression for §.J, we get

[}

T

7 R
_ T ﬁ B B (AH)
5. = 2/(1 TC>5Tdt+//A{Cp[(Tb T)6F — FST) + preh }drdt
0 7o

0

ok
5T 5T, dt ST dr dt
+/L,00p +pC } +//{ ] '
0

T R

r T
//[TpCp 250, ]5 drdt

0
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2.7 The augmented functional is given by

te L
J= /[—Dcw(L) _ 2 de+ / M—é + Deyy) dar dt
0 0

where X is the Lagrange multiplier, which depends on x and ¢. The variation
of J is given by

te
oJ /Dcz )+ J*|Décy (L dt—l—//)\ —8¢ 4 Ddcy,) da dt
0

Using integration by parts, we get

te L L t¢ Lt
//Adc’da:dtz///\écdtda:—/ )\5(3 da: //Aacdtda;
0 0 0 0 0
L
/)\50 dx—///\dcdxdt
0
L t¢ te tr L
//)\Ddcm dtdx—/ )\Ddcm dt—//D)\ ey dz dt
0 0 0
te te L
/ )\Ddcm dt— / [D)\wdc}jdt—k / / (DAgadedz dt
0 0 0 0

Substituting the above results in the expression of §J, we get

57 = —2 / [Dew(L) + J*|Ddey (L) di
0

[Aac] do

O\m

te te

L
L
+/{)\D5cm - waéc]o dt+// A+ Dyo)dcdz dt
0 0 0
where the terms involving dc at = L are zero since ¢(L, t) is specified, i.e.,

fixed.

2.8 All the involved partial derivatives must be continuous (see Section 2.5.1,
p.-41).
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2.9 If yo < 0, then we can always find a small enough ¢ > 0 for which
Yo+ € < 0. Let yo = —a? and yo + Ay = —b? lie in the interval [yo — €, yo + €.
Let Ay be positive and equal to ¢?. Then b? — a? = —c? and

lyo + Ayl — |yol | -0 = [ -d®]
Ay

lim
Ay—0

i| | lim
dy 4 _— Ay—0

. [
lim {—} = -1
Ay—0 c?

Thus

1
attui) =2 [ |l war=-1
s dy a=0

We get the same result if Ay is negative and equal to —c?.
Likewise for yo > 0, it can be easily shown that dI(yo;h) = 1.

Chapter 3
3.1 The Hamiltonian is given by
H=u?- Y2 + Al(—ylu + y1u2) + )\g(ygu)

The necessary conditions for the minimum are

i = Hy, = —y1u + y1u?, y1(0) =410
Y2 = Hy, = you, y2(0) =0
M= —Hy, = M\(u—u?), Mi(t) =0
o= —H,, =1- \u, Aa(t) =0

Hy, =2u+ M (—y1 +2y1u) + Aoy =0

3.2 Equate ¢ to zero in Exercise 2.2. Then the necessary conditions for the

minimum are the coefficients of §y and § P equated to zero and the initial state.

Alternatively, discard the additive constant yy appearing in the expressing for

I and utilize the Hamiltonian
dy

—kiyP  4ka(yo — y)QPQ]
2y0 — Y (2y0 —y)?

= (1+M)7S { —kayP | Aka(go - y)2P2]

2yo — y (2y0 —y)?
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to obtain the following necessary conditions for the minimum:

dy —kiyP  4ko(yo — y)?P?

Y — H — =

dz A TS |:2y0 —y (2y0 — y)z ) y(O) Yo

dA —klP klyP Skg(yo - y)P2

—:—H:—1+/\TS[ - -

dz y=—+Y 200 -y (2y0 —y)? (2yo — )2
8ks(yo — y)*P?
—(2y0 BURE , At =0

—k k —y)2P
Hp = 1Y 8k2(yo — y) -0

C2y-y (290 —y)?
3.3 This exercise is similar to Exercise 3.1 except for a greater number of
state equations and control functions.
3.4 Introduce yo = t, which means that
o=1 and y=g(yo,y,u)
are the two state equations that govern I. In terms of
T T
y=o y] and g=[1 ¢

the problem is autonomous with the objective to find the minimum of

1= [ Fly(@®),u(t)
/

subject toy = g.

Chapter 4

4.1

a. According to the preconditions for the optimum (see p.102), the partial
derivatives of F' and g are continuous with respect to y and u. Then
from the existence theorem (Cauchy—Peano theorem), the solutions of

y=g, y(0)=yo
A=—-Hy=-F,—~X'gy,, At)=0

exist and are continuous with respect to time.



