
1

Chapter 2 Solutions 1 2

2-1. (a) max 200x1 + 350x2 (max total
profit), s.t. 5x1 + 5x2 ≤ 300 (legs),
0.6x1 + 1.5x2 ≤ 63 (assembly hours), x1 ≤ 50
(wood tops), x2 ≤ 35 (glass tops), x1 ≥ 0,
x2 ≥ 0
(b) x∗

1=basic=30, x∗
2=deluxe=30

(c)

x1

x 1
≤

50

x2

x2≤ 35

≥ 0x2

≥
0

x 1

5    +5    
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x
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≤
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.6    +1.5    x
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x
1

63
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x2x1
(   *,   *) = (30,30)

50

50

m
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(d)

x1

x 1
≤

50

x2

x2≤ 35

≥ 0x2

≥
0

x 1
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m
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alternative optima

All optimal from x = (30, 30) to
x = (17.5, 35).

2-2. (a) max .11x1 + .17x2 (max total
return), s.t. x1 + x2 ≤ 12 ($12 million
investment), x1 ≤ 10 (max $10 million
domestic), x2 ≤ 7 (max $7 million foreign),
x1 ≥ .5x2 (domestic at least half foreign),
x2 ≥ .5x1 (foreign at least half domestic),
x1 ≥ 0, x2 ≥ 0 (b) x∗

1=domestic=$5 million,
x∗
2= foreign=$7 million

1Supplement to the 2nd edition of Optimization in
Operations Research, by Ronald L. Rardin, Pearson
Higher Education, Hoboken NJ, c©2017.

2As of September 24, 2015

(c)

x1

x2

4 8 12

4

8

12

x 
  ≥

 0
1

x   ≥ 02

1
x 

  ≤
 1

0

2x   ≤ 7

1

2

x   + x  ≤ 12

2

1x 
  ≥

 .5
x

x   ≥ .5x
2

1

optimal
solution
(x* , x* )=(5,7)1 2

m
ax

(d)

x1

x2

4 8 12

4

8

12

x 
  ≥

 0
1

x   ≥ 02

1
x 

  ≤
 1

0

2x   ≤ 7

1

2

x   + x  ≤ 12

2

1x 
  ≥

 .5
x

x   ≥ .5x
2

1
max

alternative
optima

All optimal from x = (5, 7) to x = (8, 4).

2-3. (a) min 3x1 + 5x2 (min total cost), s.t.
x1 + x2 ≥ 50 (at least 50 thousand acres),
x1 ≤ 40 (at most 40 thousand from
Squawking Eagle), x2 ≤ 30 (at most 30
thousand from Crooked Creek), x1 ≥ 0,
x2 ≥ 0 (b) x∗

1=Squawking Eagle=40
thousand, x∗

2=Crooked Creek=10 thousand
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(c)

x1

x2

25 50 75

25

50

75

100 x  + x   ≤ 95

1

2

1

2

x   +  x  ≥ 50

x   ≤ 302

x   ≥ 01

x   ≥ 02

x 
  ≤

 4
0

1

(x*  , x*  ) = (40,10)1 2optimal solution

m
in

(d)

x1

x2

25 50 75

25

50

75

100 x  + x   ≤ 95

1

2

1

2

x   +  x  ≥ 50

x   ≤ 302

m
in

Improves forever in direction Δx1 = 1,
Δx2 = −1.

(e)

x1

x2

25 50 75

25

50

75

100 x  + x   ≤ 95

1

2
1

2

x   +  x  ≥ 50

x   ≤ 302

x   ≥ 01

x   ≥ 02

x 
  ≤

 0
2

x 
  ≤

 4
0

1

x2 = 0 leaves no feasible.

2-4. (a) max x1 (max beef content), s.t.

x1 + x2 ≥ 125 (weight at least 125),
2.5x1 + 1.8x2 ≤ 350 (calories at most 350),
0.2x1 + 0.1x2 ≤ 15 (fat at most 15),
3.5x1 + 2.5x2 ≤ 360 (sodium at most 360),
x1 ≥ 0, x2 ≥ 0 (b) x∗

1=beef=25g,
x∗
2=chicken=100g

(c)

x1

x2

25

50

75

100

125

150

175

10 20 30 40 50

x  + x  ≥ 125
1

2

2.5x  +1.8x  ≤ 350

1

2

x   ≥ 01

x   ≥ 02

0.2x  + 0.1x  ≤ 15

1

2

3.5x  + 2.5x   ≤ 360

1

2

max

optimal solution
(x* , x* ) = (25,100)1 2

(d)

x1

x2

25

50

75

100

125

150

175

10 20 30 40 50

2.5x  +1.8x  ≤ 350

1

2

x   ≥ 01

x   ≥ 02

0.2x  + 0.1x  ≤ 15

1

2

3.5x  + 2.5x   ≤ 360

1

2

1
2

x  + x  ≥ 200

x1 + x2 ≥ 200 leaves no feasible.
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(e)

x1

x2

25

50

75

100

125

150

175

10 20 30 40 50

2.5x  +1.8x  ≤ 350

1

2

0.2x  + 0.1x  ≤ 15

1

2

3.5x  + 2.5x   ≤ 360

1

2

max

Improve forever in direction Δx1 = 1,
Δx2 = −2.

2-5. (a) max 450v + 200c (max total profit),
s.t. 10v + 7c ≤ 70000 (water at most 70000
units), v + c ≤ 10000 (total acreage 10000),
v ≤ 7000 (at most 70% vegetables), c ≤ 7000
(at most 70% cotton), v ≥ 0, c ≥ 0 (b)
v∗ = 7000, c∗ = 0

(c)

v

c

2000 4000 6000 8000

2000

4000

6000

8000

10000
10v + 7c ≤ 70000

v + c ≤ 10000

v 
≥ 

0

c ≥ 0

v ≤ 7000

c 
≤ 

70
00

optimal solution (v *, c *) = (7000,0)

max

(d)

v

c

2000 4000 6000 8000

2000

4000

6000

8000

10000

10v + 7c ≤ 70000

v + c ≤ 10000

max

Improves forever in direction Δv = 10,
Δc = −7.

(e)

c

2000 4000 6000 8000

2000

4000

6000

8000

10000

10v + 7c ≤ 70000

v + c ≤ 10000

v 
≥ 

0

c ≥ 0

v ≤ 7000

c 
≤ 

70
00

v + c ≥ 10000

No solution with v + c = 10000.

2-6. (a) min x1 + x2 (min used stock), s.t.
5x1 + 3x2 ≥ 15 (cut at least 15 long rolls),
2x1 + 5x2 ≥ 10 (cut at least 10 short rolls),
x1 ≤ 4 (at most 4 times on pattern 1), x2 ≤ 4
(at most 4 times on pattern 2), x1, x2 ≥ 0 and
integer. (b) Partial cuts make no physical
sense because all unused material is scrap. (c)
Either x∗

1 = x∗
2 = 2, or x∗

1 = 3, x∗
2 = 1
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(d)

x1

x2

x 
  ≤

 4
1

x 
  ≥

 0
1

5x  + 3x   ≥ 15

1
2

2x  + 5x   ≥ 10

1

2

x   ≤ 42

2x   ≥ 0

alternative
optima

m
in

1 2 3 4 5

1

2

3

4

5

(e) Both (2, 2) and (3, 1) are feasible and lie
on the best contour of the objective.

2-7. (a) min 16x1 + 16x2 (min total wall
area), s.t. x1x2 = 500 (500 sqft pool),
x1 ≥ 2x2 (length at least twice width),
x2 ≤ 15 (width at most 15 ft), x1 ≥ 0, x2 ≥ 0
(b) x∗

1=length=33 1
3 feet, x∗

2=width=15 feet

(c)

x1

x2

10 20 30 40

10

20

30

40

x 
  ≥

 0
1

x   ≥ 2x 2

1

x  x   = 500

1
2

2x   ≥ 0

x   ≤ 152

50

optimal solution
(x*  , x*  ) = (33.33,15)1 2

min

(d)

x1

x2

10 20 30 40

10

20

30

40

x 
  ≥

 0
1

x   ≥ 2x 2

1

x  x   = 500

1
2

2x   ≥ 0

x   ≤ 152

50

x 
  ≤

 2
5

1

x1 ≤ 25 leaves no feasible.

2-8. (a) max x2 (max number of floors),
s.t. π/4(x1)

2x2 = 150000 (150000 sqft floor
space), 10x2 ≤ 4x1 (height at most 4 times
diameter), x1 ≥ 0, x2 ≥ 0 (b) x∗

1 = diameter

= 78.16 feet, x∗
2 = floors = 31.26

(c)

x1

x2

x 
  ≥

 0
1

2x   ≥ 0

20 40 60 80 100

20

40

60

80

10x   ≤ 4x 1
2

π (x  ) x   = 150000

1 2
2

14
_

optimal solution
(x*  , x* ) = (78.16,31.26)1 2

m
ax

(d)

x1

x2

x 
  ≥

 0
1

2x   ≥ 0

20 40 60 80 100

20

40

60

80

10x   ≤ 4x 1
2

π (x  ) x   = 150000

1 2
2

14
_

x 
  ≤

 5
0

1

x1 ≤ 50 leaves no feasible.

2-9.

(a)

(b) min x2 (c) min x1 + x2 (d) max x2 (e)
x2 ≤ 1/2

2-10.
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(a)

(b) min x1 + x2 (c) min x1 (d) max x1 (e)
x1 + x2 ≤ 1
2-11. (a) min

∑4
i=3 i

∑2
j=1 yi,j

(b) max
∑4

i=1 iyi,3
(c) max

∑p
i=1 αiyi,4

(d) min
∑t

i=1 δiyi
(e)

∑4
j=1 yi,j = si, i = 1, . . . , 3

(f)
∑4

j=1 aj,iyj = ci, i = 1, . . . , 3
2-12. (a)∑17

i=1 xi,j,t ≤ 200, j = 1, . . . , 5; t = . . . , 7; 35
constraints
(b)

∑5
j=1

∑7
t=1 x5,j,t ≤ 4000; 1 constraint

(c)∑5
j=1 xi,j,t ≥ 100, i = 1, . . . , 17; t = 1, . . . , 7;

119 constraints
2-13. model; param m; param n; param

p; set products := 1 .. m; set lines

:= 1 .. n; set weeks := 1 .. p; var

x{i in products, j in lines, t in

weeks} >= 0; subject to

# part (a)

linecap {j in lines, t in weeks}: sum

{i in products} x[i,j,t] <= 200;

# part (b)

prod5lim: sum {j in lines, t in

weeks} x[5,j,t] <= 4000;

# part (c)

minprodn{i in products, t in weeks}:
sum {j in lines} x[i,j,t] >= 100;

#

data; param m := 17; param n := 5;

param p := 7;

2-14. (a)∑9
j=1 xi,j,t ≤ pi, i = 1, . . . , 47; t = 1, . . . , 10;

470 constraints
(b) 0.25

∑47
i=1

∑9
j=1 xi,j,t ≤

∑47
i=1 xi,4,t; t =

1, . . . , 5; 5 constraints
(c) xi,1,t ≥ xi,j,t i = 1, . . . , 47; j =
1, . . . , 9; t = 1, . . . , 10; 4230 constraints
2-15. model; param m; param n; param

q; set plots := 1 .. m; set crops :=

1 .. n; set years := 1 .. q; param p

{i in plots }; var x{i in plots, j

crops, t in years} >= 0; subject to

# part (a)

acrelims {i in plots, t in years }:
sum {j in crops } x[i,j,t] <= p[i];

# part (b)

crop4min {t in years: t <= 5 }:
0.25* sum {i in plots, j in crops }
x[i,j,t] <= sum {i in plots }
x[i,4,t];

# part (c)

beam1st {i in plots, j in crops, t in

years}: x[i,1,t] >= x[i,j,t];

#

data; param m := 47; param n := 9;

param q := 10;

2-16. (a) f(y1, y2, y3) Δ
= (y1)

2y2/y3,
g1(y1, y2, y3) Δ

= y1 + y2 + y3, b1 = 13,
g2(y1, y2, y3) Δ

= 2y1 − y2 + 9y3, b2 = 0,
g3(y1, y2, y3) Δ

= y1, b3 = 0, g4(y1, y2, y3) Δ
= y3,

b4 = 0
(b) f(y1, y2, y3) Δ

= 13y1 +22y2 +10y2y3 +100,
g1(y1, y2, y3) Δ

= y1 − y2 + 9y3, b1 = −5,
g2(y1, y2, y3)

Δ
= 8y2 − 4y3, b2 = 0, g3(y1, y2, y3)

Δ
= y1, b3 = 0, g4(y1, y2, y3) Δ

= y2, b4 = 0,
g5(y1, y2, y3 Δ

= y3, b5 = 0,
2-17. (a) Linear because LHS is a weighted
sum of the decision variables. (b) Linear
because both LHS and RHS are weighted
sums of the decision variables. (c) Nonlinear
because LHS has reciprocal 1/x9. (d) Linear
because LHS is a weighted sum of the decision
variables. (e) Nonlinear because LHS has
(xj)

2 terms. (f) Nonlinear because LHS has
log(x1) term, and RHS has a product of
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variables. (g) Nonlinear because LHS has
max operator. (h) Linear because LHS is a
weighted sum of the decision variables.

2-18. (a) LP because the objective and all
constraints are linear. (b) NLP because of
the nonlinear objective function with
reciprocal of w2. (c) NLP because of the
nonlinear first constraint. (d) LP because the
objective and all constraints are linear.

2-19. (a) Continuous because fractions
make sense. (b) Discrete because they either
closed or not. (c) Discrete because a specific
process must be used. (d) Continuous
because fractions can probably be ignored.

2-20. (a)
∑8

j=1 xj = 3 (b)
x1 + x2 + x4 + x5 ≥ 2 (c) x3 + x8 ≤ 1 (d)
x4 ≥ x1

2-21. (a) max 85x1 + 70x2 + 62x3 + 93x4

(max total score), s.t.
700x1 + 400x2 + 300x3 + 600x4 ≤ 1000 ($1
million available), xj = 0 or 1, j = 1, . . . , 4
(b) Fund 2 and 4, i.e. x∗

1 = x∗
3 = 0,

x∗
2 = x∗

4 = 1

2-22. (a) min 43y1 + 175y2 + 60y3 + 35y4
(min total land cost), s.t. y2 + y4 ≥ 1 (service
NW), y1 + y2 + y4 ≥ 1 (service SW),
y2 + y3 ≥ 1 (service capital), y1 + y4 ≥ 1
(service NE), y1 + y2 + y3 ≥ 1 (service SE),
yj = 0 or 1, j = 1, . . . , 4 (b) Build 3 and 4,
i.e. y∗1 = y∗2 = 0, y∗3 = y∗4 = 1

2-23. (a) ILP because the objective and all
constraints are linear, but variables are
discrete. (b) NLP because the objective is
nonlinear and all variables are continuous. (c)
INLP because the objective is nonlinear and
variables are discrete. (d) LP because the
objective and all constraints are linear, and all
variables are continuous. (e) INLP because
the one constraint is nonlinear, and z3 are
discrete. (f) ILP because the objective and
all constraints are linear, but variables z1 and
z3 are discrete. (g) LP because the objective
and all constraints are linear, and all variables
are continuous. (h) INLP because the
objective is nonlinear and z3 is discrete.

2-24. (a) Model (d) because LP’s are
generally more tractable than ILP’s. (b)
Model (d) because LP’s are generally more
tractable than NLP’s. (c) Model (d) because
LP’s are generally more tractable than
INLP’s. (d) Model (f) because ILP’s are
generally more tractable than INLP’s. (e)
Model (g) because LP’s are generatlly more
tranctable than ILP’s.

2-25.

(a)

x1

x2

4 12 16

4

8

12

16

x 
  ≤

 8
1

x   ≥ 02

x 
  ≥

 0
1

- x
   

+ 
x  

 ≤ 
4

1

2

max

alternative
optimal
solutions

Alternative optima from x∗
1 = 8, x∗

2 = 0 to
x∗
1 = 8, x∗

2 = 12

(b)

x1

x2

4 12 16

4

8

12

16

x 
  ≤

 8
1

x   ≥ 02

x 
  ≥

 0
1

- x
   

+ 
x  

 ≤ 
4

1

2

max

optimal solution (x*  , x*  ) = (0,4)1 2

Unique optimum x∗
1 = 0, x∗

2 = 4 (c) Helping
one can hurt the other.

2-26.
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(a)

Unique optimum x∗
1 = 4, x∗

2 = 0
(b)

Unique optimum x∗
1 = 0, x∗

2 = 4 (c) Helping
one can hurt the other.

2-27. (a) min
.092x4 + .112x5 + .141x6 + .420x9 + .719x12

(min total cost),
s.t. x4 + x5 + x6 + x9 + x12 = 16000 (16000m
line),
.279x4 + .160x5 + .120x6 + .065x9 + .039x12 ≤
1600 (at most 1600 Ohms resistance),
.00175x4 + .00130x5 + .00161x6 + .00095x9 +
.00048x12 ≤ 8.5 (at most 8.5 dBell
attenuation),
x4, x5, x6, x9, x12 ≥ 0
(b) Nonzeros: x∗

5 = 1000, x∗
12 = 15000

2-28. (a) Pump rates are the decisions to be
made.
(b) uj

Δ
= the capacity of pump j, cjΔ= the

pumping cost of pump j
(c) min

∑10
j=1 cjxj

(d) x1 + x4 + x7 ≤ 3000 (well 1),

x2 + x5 + x8 ≤ 2500 (well 2),
x3 + x6 + x9 + x10 ≤ 7000 (well 3)
(e) xj ≤ uj , j = 1, . . . , 10

(f)
∑10

j=1 xj ≥ 10000
(g) xj ≥ 0, j = 1, . . . , 10
(h) A single objective LP because the one
objective and all constraints are linear, and
all variables are continuous.
(i) x∗

1 = x∗
2 = x∗

3 = 1100, x∗
4 = x∗

6 = 1500,
x∗
5 = 1400, x∗

7 = 400¡ x∗
8 = x∗

10 = 0, x∗
9 = 1900

2-29. (a) The decisions to be made are which
projects to undertake.
(b) pj Δ

= the profit for project j, mj
Δ
= the

man-days required on project j, and tj Δ
= the

CPU time required on project j.
(c) max

∑8
j=1 pjxj

(d) 7 ≤
(∑8

j=1 mjxj

)
/240 ≤ 10

(e)
∑8

j=1 tjxj ≤ 1000 (computer time),∑8
j=1 xj ≥ 3 (select at least 3);

x3 + x4 + x5 + x8 ≥ 1 (include at least 1 of
director’s favorites)
(f) xj = 0 or 1, j = 1, . . . , 8
(g) A single objective ILP because the one
objective and all constraints are linear, but
variables are discrete.
(h) x∗

1 = x∗
3 = x∗

6 = x∗
7 = 1, others = 0

2-30. (a) We must decide what quantities to
move from surplus sites to fulfill each need.
(b) si Δ

= the supply available at i, rj Δ
= the

quantity needed at j, di,j Δ
= the distance from

i to j.
(c) min

∑4
i=1

∑7
j=1 di,jxi,j

(d)
∑7

j=1 xi,j = si, i = 1, . . . , 4

(e)
∑4

i=1 xi,j = rj , j = 1, . . . , 7
(f) xi,j ≥ 0, i = 1, . . . , 4, j = 1, . . . , 7
(g) A single objective LP because the one
objective and all constraints are linear, and
all variables are continuous.
(h) Nonzeros: x∗

1,1 = 81, x∗
1,2 = 93,

x∗
1,3 = 166, x∗

1,5 = 90, x∗
1,6 = 85, x∗

1,7 = 145,
x∗
2,2 = 301, x∗

3,1 = 166, x∗
3,4 = 105, x∗

4,3 = 99

2-31. (a) The values to be chosen are the
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coefficients in the estimating relationship.

(b) min
∑n

j=1

(
cj − k/(1 + ea+bfj )

)2
(min

total squared error)
(c) Single objective NLP because the
objective is quadratic, there are no
constraints, and all variables are continuous.

2-32. (a) The decisions to be made are
where to assign each teacher.
(b) min

∑22
i=1

∑22
j=1 ci,jxi,j (min total cost),

max
∑22

i=1

∑22
j=1 ti,jxi,j (max total teacher

preference), max
∑22

i=1

∑22
j=1 si,jxi,j (max

total supervisor preference), max∑22
i=1

∑22
j=1 pi,jxi,j (max total principal

preference)

(c)
∑22

j=1 xi,j = 1, i = 1, . . . , 22 (each teacher
i)

(d)
∑22

i=1 xi,j = 1, j = 1, . . . , 22 (each school
j)
(e) xi,j = 0 or 1, i, j = 1, . . . , 22
(f) A multiobjective ILP because the 4
objectives and all constraints are linear, but
variables are discrete.

2-33. (a) Each task must go to Assistant 0
or Assistant 1.
(b) max 100(1− x1) + 80x1 + 85(1− x2) +
70x2 + 40(1− x3) + 90x3 + 45(1− x4) +
85x4 + 70(1− x5) + 80x5 + 82(1− x6) + 65x6

(c)
∑6

j=1 xj = 3
(d) x5 = x6

(e) xj = 0 or 1, j = 1, . . . , 6
(f) A single objective ILP because the one
objective and all constraints are linear, but
variables are discrete.
(g) x∗

2 = x∗
3 = x∗

4 = 1, others = 0

2-34. (a) Batch sizes are the decisions to be
made.
(b) min xj/dj , j = 1, . . . , 4 (each burger j)

(c)
∑4

j=1 tjdj/xj ≤ 60
(d) 0 ≤ xj ≤ uj , j = 1, . . . , 4
(e) Multiobjective NLP because the first
constraint is nonlinear and all variables are
continuous.

2-35. (a) The issue is how many cars to
move from where to where.

(b) Relatively large values can be rounded if
fractional without much loss, and continuous
is more tractable.
(c) ci,j

Δ
= the cost of moving a car from i to j,

pj Δ
= the number of cars presently at j, nj

Δ
=

the number of cars required at j
(d) min

∑5
i=1

∑5
j=1,j �=i ci,jxi,j

(e)
∑5

i=1,i�=k xi,k −∑5
j=1,j �=k xk,j = nk − pk,

k = 1, . . . , 5 (each region k)
(f) xi,j ≥ 0, i, j = 1, . . . , 5, i �= j
(g) A single objective LP because the one
objective and all constraints are linear, and
all variables are continuous.
(h) Nonzero values: x∗

4,2 = 115, x∗
4,3 = 165,

x∗
5,1 = 85, x∗

5,3 = 225

2-36. (a) We must decide how much of what
fuel to burn at each plant.
(b) min

∑4
f=1

∑23
p=1 cf,pxf,p

(c) min
∑4

f=1 sf
∑23

p=1 xf,p

(d)
∑4

f=1 efxf,p ≥ rp, p = 1, . . . , 23 (each
plant p); 23 constraints
(e) xf,p ≥ 0, f = 1, . . . , 4, p = 1, . . . , 23; 92
constraints
(f) A multiobjective LP because the 2
objectives and all constraints are linear, and
all variables are continuous.

2-37. (a) The available options are to buy
whole logs or green lumber.
(b) Relatively large magnitudes can be
rounded without much loss, and continuous is
more tractable.
(c) min
70x10 + 200x15 + 620x20 + 1.55y1 + 1.30y2
(d) 100(.09)x10 + 240(.09)x15 + 400(.09)x20 +
.10y1 + .08y2 ≥ 2350
(e) x10 + x15 + x20 ≤ 1500 (sawing capacity),
100x10 + 240x15 + 400x20 + y1 + y2 ≤ 26500
(drying capacity)
(f) x10 ≤ 50 (size 10 log availability),
x15 ≤ 25 (size 15 log availability), x20 ≤ 10
(size 20 log availability), y1 ≤ 5000 (grade 1
green lumber availability)
(g) x10, x15, x20, y1, y2 ≥ 0
(h) A single objective LP because the one
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objective and all constraints are linear, and
all variables are continuous.
(i) x∗

10 = 50, x∗
15 = 25, x∗

20 = 5, y∗1 = 5000,
y∗2 = 8500

2-38. (a) Decisions to be made are when to
schedule each film.
(b) min

∑m−1
j=1

∑m
j′=j+1 aj,j′

∑n
t=1 xj,txj′,t

(c)
∑n

t=1 xj,t = 1, j = 1, . . . ,m (each film j)
(d)

∑m
j=1 xj,t ≤ 4, t = 1, . . . , n (each time t)

(e) xj,t = 0 or 1, j = 1, . . . ,m; t = 1, . . . , n
(f) A single objective INLP because the one
objective is nonlinear, and variables are
discrete. (g) model; param m; param n;

set films := 1 .. m; set slots := 1

.. n; var x{j in films, t in slots }
binary; param a{ j in films, jp in

films }; minimize totconflict: sum{ j

in films, jp in films: j < m and jp >

j } a[j,jp]*sum {t in slots}
x[j,t]*x[jp,t]; subject to allin {j in

films}: sum{ t in slots } x[j,t] = 1;

max4 {t in slots}:sum{j in films}
x[j,t] <= 4;

2-39. (a) We need to decide both which
offices to open and how to service customers
from them.
(b) Offices must either be opened or not.
(c) fi Δ

= fixed cost of site i, ci,j Δ
= unit cost of

audits at j from i, rj Δ
= required number of

audits in state j
(d) min

∑5
i=1

∑5
j=1 ci,jrjxi,j +

∑5
i=1 fiyi

(e)
∑5

i=1 xi,j = 1, j = 1, . . . , 5 (each location
j)
(f) xi,j ≤ yi, i, j = 1, . . . , 5 (each site i,
location j combination)
(g) xi,j ≥ 0, i, j = 1, . . . , 5, yi = 0 or 1,
i = 1, . . . , 5
(h) A single objective ILP because the one
objective and all constraints are linear, but
the yi variables are discrete.
(i) Nonzeros:
x∗
2,2 = x∗

2,4 = x∗
3,1 = x∗

3,3 = x∗
5,5 = 1,

y∗2 = y∗3 = y∗5 = 1 (j) model; param m;

param n; set sites := 1 .. m; set

states := 1 .. n; var x{i in sites, j

in states } >= 0; var y{i in sites }
binary; param c {i in sites, j in

states }; param f { i in sites }
binary; param r { j in states };
minimize totcost: sum{i in sites, j

in states} c[i,j]*r[j]*x[i,j] + sum{i
in sites}f[i]*y[i]; x[j,t]*x[jp,t];

subject to doeach{j in states}: sum{i
in sites}x[i,j] = 1; switch {i in

sites, j in states }: x[i,j] <= y[i];

data; param m := 5; param n := 5;

param f := 1 160 2 49 3 246 4 86 4

100; param r := 1 200 2 100 3 300 4

100 5 200; param c: 1 2 3 4 5 := 1

0.0 0.4 0.8 0.4 0.8 2 0.7 0.0 0.8 0.4

0.4 3 0.6 0.4 0.0 0.5 0.4 4 0.6 0.4

0.9 0.0 0.4 5 0.9 0.4 0.7 0.4 0.0 ;

2-40. (a) max
∑8

j=1 rjxj , subject to,∑8
j=1 xj ≤ 4, x1 + x2 + x3 ≥ 2,

x4 + x5 + x6 + x7 + x8 ≥ 1,
x2 + x3 + x4 + x8 ≥ 2, x1 . . . x8 = 0 or 1 (b)
model; param n ; set games := 1 .. n;

#ratings param r{j in games}; #home?

param h{j in games}; #state? param

s{j in games}; #cover? var x{j in

games} binary; maximize totrat: sum{j
in games} r[j]*x[j]; subject to

capacity: sum{j in games} x[j] <= 4;

home: sum{j in games} h[j]*x[j] >= 2;

away: sum{j in games}(1-h[j])* x[j]

>= 1; state: sum{j in games}s[j]*x[j]
>= 2; data; param n := 8; param r :=1

3.0 2 3.7 3 2.6 4 1.8 5 1.5 6 1.3 7

1.6 8 2.0; param h:=1 1 2 1 3 1 4 0 5

0 6 0 7 0 8 0; param s:=1 0 2 1 3 1 4

1 5 0 6 0 7 0 8 1; (c) The model is an
ILP because all constraints and the objective
are linear, but decision variables are binary.

2-41. (a) How to divide funds is the issue.
(b) max

∑n
j=1 vjxj

(c) min
∑n

j=1 rjxj

(d)
∑n

j=1 xj = 1
(e) xj ≥ �j , j = 1, . . . , n (each category j)
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(f) xj ≤ uj , j = 1, . . . , n (each category j)
(g) A multiobjective LP because the 2
objectives and all constraints are linear, and
all variables are continuous.

2-42. (a) The issue is which module goes to
which site.
(b) If xi,jxi′,j′ = 1 the i is at j and i′ is at j′,
so wire dj,j′ will be required. Summing over
all possible location pairs captures the wire
requirements for i and i′.
(c) min∑m−1

i=1

∑m
i′=i+1 ai,i′

∑n
j=1

∑n
j′=1 dj,j′xi,jxi′,j′

(d)
∑n

j=1 xi,j = 1, i = 1, . . . ,m (each module
i)
(e)

∑m
i=1 xi,j ≤ 1, j = 1, . . . , n (each site j)

(f) xi,j = 0 or 1, i = 1, . . . ,m, j = 1, . . . , n
(g) Single objective INLP because the one
objective is nonlinear and variables are
discrete. (h) model; param m; param n;

set modules := 1 .. m; set sites := 1

.. n; var x{i in modules, j in sites

} binary; param a{ i in modules, ip in

modules }; param d{ j in sites, jp in

sites }; minimize totdist: sum{ i in

modules, ip in modules: i < m and ip

> i } a[i,ip] sum{j in sites, jp in

sites : j < n and jp > j }
d[j,jp]*x[i,j]*x[ip,jp]; subject to

alli {i in modules }: sum{ j in sites

} x[i,j] = 1; allj { j in sites }:
sum { i in modules } x[i,j] <= 1;

2-43. max 199x1 + 229x2 + 188x3 + 205x4 −
180y1 − 224y2 − 497y3, subject to,
23x3 + 41x4 ≤ 2877y1, 14x1 + 29x2 ≤ 2333y2,
11x3 + 27x4 ≤ 3011y3,
x1 + x2 + x3 + x4 ≥ 205, y1 + y2 + y3 ≤ 2,
x1, . . . , x4 ≥ 0, y1, . . . , y3 = 0 or 1

2-44. max 11x1,1 +15x1,2 +19x1,3 +10x1,4 +
19x2,1 + 23x2,2 + 44x2,3 + 67x2,4 + 17x3,1 +
18x3,2 + 24x3,3 + 55x3,4, subject to, 15x1,1 +
24x2,1 + 17x3,1 ≤ 7600, 19x1,2 + 26x2,2 +
13x3,2 ≤ 8200, 23x1,3+18x2,3+16x3,3 ≤ 6015,
14x1,4+33x2,4+14x3,4 ≤ 5000, 31x1,1+26x2,1+
21x3,1 ≤ 6600, 25x1,2+28x2,2+17x3,2 ≤ 7900,
39x1,3 + 22x2,3 + 20x3,2 ≤ 5055, 29x1,4 +

31x2,4+18x3,4 ≤ 7777, x1,1+x2,1+x3,1 ≥ 200,
x1,2 + x2,2 + x3,2 ≥ 300, x1,3 + x2,3 + x3,3 ≥
250, x1,4 + x2,4 + x3,4 ≥ 500, xj,t ≥ 0, j =
1, . . . 3, t = 1, . . . 4.
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