PHYSICS OF CONTINUOUS MATTER

Answer 1.2

(a) The minimum is at r = a = 21/6¢ where the potential takes the value V(a) = —e. (b) Expanding
to second order in r — a we get V(r) = %k(r —a)? with k = 72¢/a?. (c) The frequency of harmonic
radial oscillations is @ = /k/m where m is the mass of the atom. For Argon one finds k = 1.45 J/m?
and w = 4.7 x 1012 571,

Problem 1.3 Consider a collection of N identical molecules (a “material particle”) taken from a large
volume of gas. Let the instantaneous molecular velocities be v, forn = 1,2.-., N. Collisions with
other molecules in the gas at large will randomly change the velocity of each of the selected molecules,
but if there is no overall drift in the gas, the velocity of individual molecules should average out to zero,
(vn) = 0, the velocities of different molecules should be uncorrelated, (v, v,,) = 0 for n # m, and the
average of the square of the velocity should be the same for all molecules, (v%) = v%.

(a) Show that the root-mean-square average of the center-of-mass velocity of the collection equals
vo/ JN.

Answer 1.3 (a) The CMS-velocity is v = N ™! 3", vy, and the average of its square becomes
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Problem 1.4 Any distance function must satisfy the axioms

d(a,a) =0,
d(a,b) =4d(b,a), (symmetry)
d(a,b) <d(a,c)+ d(c,b). (triangle inequality)

Show that the Cartesian distance function (1.14) satisfies these axioms.

Answer 1.4  The two first inequalities are trivial. In the third we may without loss of generality
place the coordinate system such that ¢ = 0, @ = (a1,0,0), and b = (b1, b2, 0). The third inequality

then becomes /(a1 — b1)% + b% < ,/a% + ,/b% + b%. Squaring it and canceling common terms on
both sides, it becomes —2a1b; < 2 |aq| b% + b%. It is obviously fulfilled for a1b; > 0, while for

a1b1 < 0 the inequality may be squared once more to yield 4a%b% < 4a%(b% + b%) which is trivially
fulfilled.

2 Pressure

Problem 2.1 The normal human systolic blood pressure is usually quoted as 120 mm mercury (above
atmospheric pressure). A clinical sphygomanometer used to measure blood pressure is constructed from
a U-tube half filled with mercury. During measurement, the air pressure in one arm of the manometer is
supplied by an inflated blood-constricting cuff around the upper arm or the wrist, whereas the other arm
of the manometer is exposed to atmospheric pressure. (a) How long should the arms of the manometer
be when it must accommodate a measurement range of +100% around normal?

Answer 2.1  (a) The range of the manometer is from 0 to 240 mmHg. The distance between the
pressurized and open mercury surfaces must therefore at least be 240 mm = 24 cm. This is indeed the
typical size of clinical mercury manometers.
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Problem 2.2 Consider a canal with a dock gate that is 12 m wide and has water depth 9 m on one
side and 6 m on the other side. Calculate

(a) The pressure in the water on both sides of the gate at a height z over the bottom.

(b) The total force on the gate.

(c) The total moment of force around the bottom of the gate.

(d) The height over the bottom at which the total force acts.

Answer 2.2 Puth; = 9m, i, = 6 mand a = 12 m. Atmospheric pressure is pg.
(a) On one side p; = po + pogo(h1 — z), on the other p» = po + pogo(h2 — z).
(b) F1 = fohl(pl —poadz = %h%apogo. F=F1—Fra~27x10°N.

) M; = fohl z(p1 — po)adz = éh%apogo. M = M1 — Mj ~ 107 Nm.
@z=M/F=38m.

Problem 2.3 An underwater lamp is covered by a hemispherical glass with a radius of @ = 15 cm
and is placed with its center at a depth of 7 = 3 m on the side of the pool. (a) Calculate the total
horizontal force from the water on the lamp when there is air at normal pressure inside.

Answer 2.3  The horizontal pressure force on the hemisphere must be equal to the pressure force
on the vertical plane through the center of the sphere. The linear rise of pressure with depth makes
the hydrostatic pressure act with its average value Ap = pogoh at the center. So the horizontal force
becomes Apma? ~ 2100 N, corresponding to the weight of 210 kg.

If you do not like this argument, it is also possible with some effort to integrate the pressure force
directly in spherical coordinates with the x-axis orthogonal to the wall,

Fef  Gepas=-[  (p-poéds
half—sphere half—sphere
4 /2
=—a2/ d@/ d¢ sinf (p — po) ér.
0 —m/2
Using p = po + pogo(h — a cos 6), the x-component of the force becomes
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Problem 2.4 Using a manometer, the pressure in an open container filled with liquid is found to be
1.6 atm at a height of 6 m over the bottom, and 2.8 atm at a height of 3 m. (a) Determine the density of
the liquid and (b) the height of the liquid surface.

Answer 24 Puth; = 6m, p; = 1.6 atmand i = 3 m, p, = 2.8 atm. From p; — ps =
—pogo(h1 —ha) we get po ~ 4100 kg m~3, and from p1—po = —(h1—ho)pogo we get hp = 7.5 m.

Problem 2.5 An open jar contains two non-mixable liquids with densities p; > p». The heavy layer
has thickness /1 and the light layer on top of it has thickness /5. (a) An open glass tube is now lowered
vertically into the liquids toward the bottom of the jar. Describe how high the liquids rise in the tube
(disregarding capillary effects). (b) The open tube is already placed in the container with its opening
close to the bottom when the heavy fluid is poured in, followed by the light. How high will the heavy
fluid rise in the tube?
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Answer 2.5  (a) The surface inside the tube will be at the same level 11 + h3 as in the jar. (b) The
heavy liquid in the tube must initially rise to the same level /2 as in the jar. When the light liquid is
poured in, the surface of the heavy liquid in the tube must rise further to balance the weight of the light
and rise to a height i1 + hap2/p1 < h1 + h».

Problem 2.6 Show that a mixture of ideal gases (see page 4) also obeys the equation of state (2.27).

Answer 2.6  Repeating the argument leading to (2.7) the pressure becomes the sum over molecular
species, p = % > i pi (vz)i where p; = N;m;/V is the density of each species. Consequently, by
the equipartition theorem pV = 1 3°; Nym; (v?); = X, NikgT = NkpT = nRyoT where n =
N/Nyg = M/Mpyo = pV/Mpe is the total number of moles, p is the average density and My, the
average molar mass.

Problem 2.7 The equation of state due to van der Waals is
n2a

where a and b are constants. It describes gases and their condensation into liquids. (a) Calculate the
isothermal bulk modulus. (b) Under which conditions can it become negative, and what does that mean?

Answer 2.7  Solving for the pressure, we find
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(b) It can become negative for sufficiently low temperature, satisfying
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which means that the gas must have condensed.

Problem 2.8 Calculate the pressure and density in the flat-Earth sea, assuming constant bulk modu-
lus. (a) Show that both quantities are singular at a certain depth and calculate this depth.

Answer 2.8 (a) When K is constant it follows from (2.42) that p = K log p + const. Inserting this
into the local hydrostatic equations (2.23), it may be solved with the result,

V4
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K K
hi = —— = —hy.
Pogo po

The pressure and density become singular for z = —h1, which for water is i1 ~ 235 km.
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# Problem 2.9 Calculate the isentropic scale height for the Mars atmosphere.

Answer 2.9  Typical data for Mars are go = 3.73 ms™ !, Ty = 220K, Mmo = 44 gmol ™!, and

y = 4/3 (carbon dioxide). Thus hy = %% ~ 45 km.

3 Buoyancy and stability

Problem 3.1 A stone weighs F; = 1,000 N in vacuum and Fo = 600 N when submerged in water
of density pg. (a) Calculate the volume V' and (b) average density p; of the stone.

Answer 3.1  (a) The weight of the displaced water is F; — Fo9 = poVgo, so that V = (F; —
Fo)/pogo = 0.04 m3. (b) The weight of the stone is Fo = p1Vgo so that p; = Fo/Vgo =
gopoF1/(F1 — Fo) = 2500 kg m~3.

Problem 3.2 A hydrometer is an instrument used to measure the density of a liquid. A certain
hydrometer with mass M = 4 g consists of a roughly spherical bulb and a long thin cylindrical stem
of radius ¢ = 2 mm. The sphere is weighed down so that the apparatus will float stably with the stem
pointing vertically upward and crossing the fluid surface at some point. (a) How much deeper will it
float in alcohol with mass density p; = 0.78 g cm™3 than in oil with mass density p» = 0.82 g cm™3?
You may disregard the tiny density of air.

Answer 3.2  (a) The mass of the hydrometer displaces two different volumes M = p1 Vi = pa V5.
The difference in volumes is only due to the change in the extra piece of the stem below the waterline in
the lighter alcohol, or wa®d = Va — Vi = M(1/p2 — 1/p1). The result is d = 20 mm.

Problem 3.3 A cylindrical wooden stick with density p; = 0.65 g cm™3 floats in water (density
po = 1 g cm™3). The stick is loaded down with a lead weight with density po = 11 g cm™3 at one
end such that it floats in a vertical orientation with a fraction f = 1/10 of its length out of the water.
(a) What is the ratio M1 /M, between the masses of the wooden stick and the lead weight? (b) As a
function of the density of the wood, how large a fraction of the stick can be out of the water in hydrostatic
equilibrium (disregarding questions of stability)?

Answer 3.3  (a) Displacement M1 + M, = po((1— f)V1+V2) with M1 = p1V; and My = pp V5.
Solving for the volume ratio
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the mass ratio becomes M1/ M, = 2.36.
(b) The denominator must be positive: f < 1 — pj/po = 0.35.

Problem 3.4 Prove without assuming constant gravity that the hydrostatic moment of buoyancy
equals (minus) the moment of gravity of the displaced fluid (corollary to Archimedes’ principle).



