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Chapter 1 — Introduction

Section 1.1

1.

(a)
(b)
(c)
(d)
(e)
(f)

(AUBYNC={1,2,3,4,5}N{1,8} ={1}.
AUBNO)={135 u{1}={1.3,5}.
(A\C)UB ={3,5tU{1,2,4} ={1,2,3,4,5}.
(AN B)xC ={1}x{1,8} ={(1,1),(1,8)}.

Cx C={1,8} x{1,8} = {(1,1),(1,8).&,1),(8 8)}.
{s}na=y.

Add equations x -2y = -4 and -2x+2y =2 to get ~x=-2. Thus, x=2 and y=3.

(a)

(b)

()

(@)

(e)

(a)

(b)

(c)

(@)

(e)

ANA=A.Proof. If x€ANA, then xEA. Thus, ANAC A, Now, if xEA, then x€AN A, Thus,
AC AN A.Hence, ANA=A.

AUA= A. Proof is similar to the above.
ANB=BNA.Proof. If xEANB, then x €A and x€B. Thus, x€EBNA andso, ANBCBNA.
Similarly, BN AC AN B. And hence, the equality holds.

AU B= BU A. Proof is similar to the above.
(ANBYNC=AN(BNC).Proof. If x&(ANB)NC,then xEANB and xEC. Thus, xEA,
x&€B, and x €C. Therefore, x €A and x EBNC ., Hence, x EAN (BN C). And therefore,
(ANBYNCC AN (BNC). Similarly, AN(BNC)C (AN B)N C. And hence, the equality follows.

AUBNC)=(AUBN(AUC). Proof. If x€AU(BNC), then xEA or xEBNC. Thus, x €A
or xEB,and x €A or x €C. Therefore, xEAUB and xEAUC. So AUBNC)C
(AUB)YN(AUC). Similarly, (AUB)YNAUC)C AU (BNC). And the equality follows.

AV(BNC)=(A\ BYU(A\C). Proof. If xEA\N(BNC), then x €A and x €BNC . Thus, x EA
and x£B,or xEA and x&C. So xE(A\B)U(A\C) and AN (BNC)CS(A\BYU(AN Q).
Similarly, (A\ B)U(A\CYE AN(B N C). And the equality follows.

Suppose AC B. We will show that ANBC A and AC AN B. To thisend, if x EAN B, then x EA
and x €EB. Clearly, ANBC A.If xEA, since AC B we have x €B. Thus, x€EAN B and so

AC AN B.Hence, AN B=A. Conversely, suppose ANB=A and x EA. Then x EB. And
therefore, AC B.

If xEANB,then xEA and xEB. So x A\ B. Thus, x EA\(A\ B). Hence, ANBC

A\ (A\B). Conversely, if xEA\ (A\ B), then x €A and x €A\ B. Note that x EB since
otherwise, if x B, then since x €A, we would have x €A\ B, which is not the case. Hence,
xEANB. And thus, A\ (A\ B)C AN B. And the equality follows.

If x€(A\B)U(B\A),then xEA\Bor x&€B\ A. Thus, xEA and x&B, or xEB and x &A.
Therefore, x EAU B and x ZANB. So, x E(AU B)\ (A N B). Similarly, (AU B)\(AN B)C
(A\ BYU(B\ A). And the equality follows, Observe that x €A or x €EB, but x & of both A and B.

If (x,y)E(ANB)x C, then xEANB and y EC. Thus, x EA and x EB. So (x,y) EAx C, and
(x,y) EBxC . Hence, (x,y) E(AxC)N (B xC). And therefore, (AN B)xCC (Ax C)N(BxC).
Similarly, (Ax C)N{BxC)C (AN B)x C. And the equality follows.

First, observe that (AN B)N(A\ B)=¢ . Forif xE(ANB)N(A\B), then xEAN B and x EA\ B.
But this means that x €A, and that x is both in B and not in B, which is impossible. Secondly,
suppose that x €A. Then, x is either in B ornotin B.If xEB, then x EAN B. And if x&B, then
x €A\ B. Thus, in either case x E(AN B)U(A\ B), implying that AC (AN B)YU(A\ B).
Similarly, (AN B)YU(A\ B)C A. And the equality follows.
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7.

9.

{=) Start with a square with sides of length « + b. Form four right triangles inside the square with short sides
along the original square, one side of length a and the other of length b. Since all four triangles are congruent
(i.e., two sides and the included angle are equal), the hypotenuse of each of these triangles is the same, call it

¢ . This creates a small square inside the large square, with sides of length ¢. Why? Thus, the area inside the

large square is equal to the area of four right triangles and a little square. This gives (a + b)2 = 4(%— ab) +e2,

which reduces to a>+b° =c>.

(=) Let us consider two triangles. One is a right triangle with short sides (legs) of length a and 4. The
second triangle has sides a, b, ¢, for which a’+b? =c?. In the first triangle, by proof of (=), we have that

hypotenuse x satisfies xZ =a?+b>. Since a*+b? =c?', we must have x2 =c2, which implies that x=c.
Therefore, two triangles have equal sides, hence are congruent. Thus, corresponding angles are equal. It follows
that the angle opposite side ¢ in the second triangle must be a right angle.

P(A) contains exactly 2" elements, a power of 2.

Section 1.2

1.

2,

5.

2 2
(b) The given equation is equivalent to (x - %) +( y+ %) = 1:—4 To graph this relation start with a circle with

the center at the origin and the radius % and then shift it to the right % units and down % units.

(a) In order for the radical to make sense and to avoid division by 0, we need x +1 > 0. Therefore,
Df ={x|x>—1}.

(b) In order for the radical to make sense, we need x —1 = 0. And to avoid division by 0, we need x -2 = 0.
Thus, Df={x|x21 and x=2},

(d) We will avoid division by zero if Prx=2 =(x-1Xx+2)= 0. Thercfore, Df ={x|x # l,xa=—2}.

(a) To show that f is an injection, suppose that f (x1)= f (xz) . And then show that x; = x for any
x1, x3 €Dy Thus, if 2x; —1=2x — 1, we have 2x; = 2x; and so, x; = x,. To show that f isa
surjection, we choose an arbitrary y = y; €Ry and find x €Dy so that f(x) = y. Now since 2x-1=

y1+1
2

y1+l

)ﬂ ¥1. Hence, f is a bijection.

(x)*-1 _ (x2)’ -

¥1, solving for x we obtain x = €Dy . Thus we have f (

1
. Therefore,

(b) To show that f is an injection, suppose that f (xl )= f (xz) . Then

xl -1 x2 -
-1 +1 -1 1
(xl )(xll ) = (x2 )(xlz * ) . And canceling we obtain x; +1 = xp +1, which yields x; = x . Now
X1 - Xy =
to show that f is not a surjection, pick a particular value for y, say y=2. We will show that there is

2

= 2. Hence, x2 —2x+ 1= 0. But the only

no value x €Dy so that f(x) = 2. Therefore, we solve a
x —

real solution is x =1 which is notin Dy. Thus, f is not a surjection. Note that y =2 was chosen

1 =x+1,for x=1. Also, x+1=2 only if x =1 which is not in

since f can be written as f(x) = X
Df .

(c) Use steps similar to those in part (a) to show that f is a bijection.

(d) To show that f is not an injection, pick x; = x; . Then f (xl ) =f (xz) . For example, consider x; = -1
and xy =1. When sketching the graph of £, it is apparent that f does not pass the horizontal line test.
To show that f is not a surjection, observe that R = {y |0 sy= l} is not equal to the interval [0,4).

Let M =max f. We will prove that sup f = M. Since M =max f, by Definition 1.2.15, part (b), there
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exists x; €Dy such that f{x )= M and f(x)s f(x;) forall x ED;. Thus, by Definition 1.2.14, M is an
upper bound of f. Now, if M, is any real number smaller than M, then M < f (xl ) ,and so M| is not an
upper bound of f. Hence, M is the least upper bound of f meaning that M =sup f.

7. (b) Since f, g are odd functions, f(-x)=- f(x) and g(-x) = —g(x) for all x €EA. Thus, for all xEA,

we have (fgl-x) = f(=x)g(=x) = [-f()I[-g(x )] = f()g(x) =(fgXx), and s0 fz is even.

(e) f(x)=0 forall xENR.

9. @ 1u+pw+ilf-owl=1r@+is@w+lr0-1a|=1r@+Lew+
L Fx) -1y if f(x)=g(x) F0)if F(0) = g(x)
. . = . =(fvgix).
{2r@-1ew]if F<gw) 8@ if f)<g(x)

(€ (fve)x)=xZif x<-lor x>1, (fvg)x)=2-x2if ~lsx=l,and (fAg)x)=2—-x" if
x<-lorx>1, (f/\g)(x)=,\:2 f-lsxs=sl.

10, (fog)-2)=f(gED) = fQ2-2)+1) = f(-d+1) = f(=3) = (-3)* =3=6

11. Choose f(x)= x2 and g(x) = x+ 1. Then, (fog)(x)= x2+2x+1and (go f)(x)= 241

12. Since (go f)-x)= g(f(-x) = g(-f(x)) = g(f(x)) = (g o S)(x) go f is an even function.

Since (gog)(-x)=g(g(-x)) = g(g(x)) = (g 0 g)(x). gog is an even function.

13. (a) Suppose f: A— Band g: B— C are injective. To prove go f : A — C is also injective, we choose

x1, %3 EA such that (g £){(x;)= (g f)(x). We need to show that x| = x. To this end, note that
(g of)(xl) =(g Of)(xz) implies that g(f(xl )) = g(f(xz)), and since g is injective we have f(x;)=
f (xz). But, in turn, f is injective, which implies that x; = x>, which is what we needed to prove.

(b) Suppose f: A— Band g: B— C are surjective. To prove go f : A— C is also surjective, we choose
any ¢ €C and show that there exists a €A such that (go f)(a)=c. To this end, since f and g are
surjective, there exists b €8 such that g(b) = ¢ and a €A such that f(a) =b. Thus, (go fXa)=
g(f(a) =gb)=c.

14, The function f is symmetric with respect to the point (a, &) if and only if whenever (a — x,b —y) is on the
graph( f), then so is (a + x,b+y). If in addition, @ €Dy, then we can write that f is symmetric with
respect to the point (a, ) if and only if f(a—-x)+ fla+x)=2 f(a) forall x EDy.

15. Any functionon R, on [-L,L], or on (- L, L) can be written as f(x) = ACY +2f 0, S —2f 0 Now
verify that the last two quotients are even and odd, respectively.

16. Since f(n+1)= f(n) +%, use patterns to show that f(n) = —;—(n —-1). Thus, f(79)=26.

18. Proofs follow from the definitions.

19

. {(a) &) Assumethat y & f(AUB). We will show that y € f(A)U f (B). Since y € f(AUB), there
exists x € AUB such that f(x)=y. Therefore, x€E A or xEB.If x&E A, then y= f(x) € f(A).
Similarly, if xE€ B, then y= f(x) € f(B). So, y& f(A)USf(B).

(=) Since ACAUB and BC AUB, by Exercise 18(a), we have that f(A4) € f(AUB) and
f(BYC f(AUB). Hence, f(AYU f(B)C f(AUB).

(b) Since ANBC A and AN B C B, by Exercise 18(a), we have that f(ANB) C f(A) and f(ANB)C
S (B). Hence, the desired conclusion follows.
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20.

21.

22.

23.

24.

(c)

(b)

(¢)

(b)

(a)

(c)

(b)

Assume y € f(A)\ f(B). Then y € f(A) and y& f(B). Hence, there exists x € A such that
Ff(x)=1y.Since y& f(B), we know that x ¢ B. Therefore, x & A\B and y = f(x) € f(A\B). Thus,
the desired conclusion follows.

) We will show that £ (AUB)C £~ (AU f 1 (B). Let x€ f1(AUB), then f(x)€ AUB. So
FIEA or F(EB. I f(X)E A, then xE f7(A). Similarly, if F(x)E B, then x€ f ' (B).
Thus, x€ £7(4) U }(B) and the desired conclusion follows.

(=) Let x€ f (A UF(B). Then, x€ £7'(4) or x€ F'B). If x€ F1(4), then F(NE A.
Ifxe f_l (B), then f(x)E€ B. Thus, f(x)&€ AUB which implies that x € f'l(A UB). It follows
that £ 1 (AU B CF1AUB).

&) For contrast, we will use a different style of proof than in Part (a). Since ANB C A and
ANB C B, by Exercise 18(b), we have that £/ (ANB) C £~ 1(4) and F(ANB) C f~1(B). Hence,
lanpcrlwnse).

@) Let x€ AN 1 (B). Then, x& £7(A) and x€ F1(B). Since x€ £} (A) implies that
f(x)EA,and x E f"l(B) implies that f(x) € B, we have f(x)& ANB. Thus x& f_l(AUB),
which proves that f_l ) f_l B C f_l (ANB).

) Let xE f(A\B), then f(x)E A\B. So f(x)E A and f(x)& B. Thus, xE€ f~(4) and
x€ f7(B). Therefore, xE f~1(A)\ F71(B). Hence, f1(A\BYC AN FL(B).

@) Let x€ f{ A\ /1®B). Then, x€ r71(4) and x& f71(B). So fF(X)E A and F(NEB.
Thus, f(x)E€ A\B. So x€ f 1 (A\B). It follows that f~ (AU f'® C F 1 (AUB).

Let x€ A. Then f(x) € f(A). This implies that x & f -1 (7 (A)) . Hence, the conclusion follows.

Let y€ f(f_l(B)) . Then there exists x € f_l(B) such that y= f(x). Since x & f_l(B) , we have
y= f(x) € B. Hence, the conclusion follows.

In Exercise 19(b) we proved that f(ANB) C f(A) N f(B) for any sets A and B in X. To prove the
reverse inclusion we will need the assumption that f is injective. To this end, let y € f(A)N f(B).
Then y € f(A) and y € f(B). Since y € f(A), there exists a€ A such that f(a)= y. Similarly,
since y € f(B), there exists b& B such that f(b)= y. Therefore, f(a)= f(b). Since f is injective,
a=b.Thus, a€ Aand a€ B. So, a& ANB.Hence, y= f(a) € f(ANB), and so, f(A)N f(B)C
fANB).

In view of Exercise 21(a), we only need to show that f -1 (f(A)) € A if f is injective. Thus, let
xE f'l(f(A)). Then f{x) € f(A). So, there exists @ € A such that f(x)= f(a). Since f is
injective, x = a and so, x € A. Hence, f'l (f(ADC A.

By Exercise 21{a) we have A C f - (f(A)) forany A C X. By Exercise 22(c) we have f -1 (f(ApC A
only if f is injective. Thus the desired equality might not hold only if f is not injective. Let us choose

Fx)=x2, A=[0]1],and X =R. Then f '(f(A) =[-1,1] which is not in A.

In view of Exercises 19(b) and 22(a), we are looking for a function f which is not injective and that
JF(AYN f(B) is not a subset of f(AMB). Let us choose f(x)= xz, A = (0], and B=[0,%). Then,
JF(A) = f(B) =[0,%). Since ANB ={0} wehave f(ANB)={0}. Obviously, f(A)N f(B)=
S(ANB).

Let f(x)=x2, A =(%,0],and B=[0,0). Then, A\B=(~x,0), f(A\B)=(02), f(A)=[0,0)=
F£(B),and f(A)\f(B) =¢. Obviously, ¢ = (0,%).
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Section 1.3

1.

2.

(b)

(a)

(b)

(c)

C))

(6)

(g)

(i)

Suppose n and m are odd integers. Then there exist r,s €Z suchthat n=2r +1and m=2s+1. So,
nm=Q2r+1)X2s+ 1) =22rs+r +s)+ 1, which is an odd integer.

Suppose P(n) is the statement * ‘n? 4 n is divisible by 2.” Then P(l) is true because 12 +1=2 is
divisible by 2. Next, suppose P(k) is true for some k €N, that is, k% + k is divisible by 2. We will
show that P(k +1) is true, that is, (k + 1)2 + (k +1) is divisible by 2. To this end, we write

k + l)2 +k+1)= K 2kel+ksl= (k2 + k)+ 2(k +1). Since k% +k and 2(k + 1) are divisible by 2,
then so is the sum. Hence, P(n) is true for all n €N,

nn+1)(2n+1)
6

k

2 kk+1D2k+1

true for some k €N, that is, 212=%
i=1

k+1 k+1
2 it= Ge+ Dk + )2k + 3) . To this end, we write 2 i“= 2 +(k + 1)2 —-—---—--~—~k<k+ D@k+ 1)
i=1 6 =1 i=1 6

+(k+ 1) = -If-ﬂ (k+2)(2k +3). Hence, P(n) istrue forall n EN .

n
Suppose P(n) is the statement “ Ekz = .” Then P(1) is true. Next, suppose P(k) is

k=1

. We will show that P(k +1) is true, that is,

. .
Suppose P(n) is the statement * 2 i3 = [2(221—2] . Then P(1) is true. Next, suppose P(k) is true for
k=1

2 k+1
k(k+1
[%] . We will show that P(k + 1) is true, that is, zﬂ -

i=1

k
some k EN , that is, i =

=]

k+)k+2) . ket kL 3 [kGk+D] *+1)?
[-—2———] . To this end, write Ez =El +k+D)" = "'“-2'"— +(k+1)?= 7 L k+2)

Hence, P(n) is true forall n €N .

=l i=1

n
Suppose P(n) is the statement “; (2k-1)= n? ” Then P(1) is true. Next, suppose P(k) is true for

k+1
some k €N , that is, 2(21-1) k% . We will show that P(k +1) is true, that s, 2(2:-1)—
i=1 =1
k+1
(k + 2. To this end, we write 2(21-1) E(21—1)+[2(k +1)=1= k2 +2% +2-1=(k +1)%.
i=1
Hence, P(n) istrue forall n EN .
Suppose P(n) is the statement “0 <x” <1.” Then P(1) is true. Next, suppose P(k) is true for some
k €N, that is, 0 < x* <1. We will show that P(k +1) is true, that is, 0 < x**! < 1. To this end, we

write 0 < x**1 =xk(x) <1(x) <1. Hence, P(n) is true for all n EN.

Suppose P(n) is the statement “2" 1 <t n™.” Then P(1) says that 2% <1< 1, which is true. Next,
suppose P(k) is true for some k €N, that is, 251 2 gy <k*. We will show that P(k +1) is true, that
is, 2% < k+)=s(k +1)k+1. To this end, we write 2k - 2k"1(2)s GOY2D)y=skYk+D) =

kk(k +D=sk+ l)k(k +1)=(k+ 1)k+l. Hence, P(n) is true for all n €N .

Suppose P(n) is the statement “cos nt = (—1)".” Then P(1) is true. Next, suppose P(k) is true for
some k €N, that is, coskm = (— l)k. We will show that P(k +1) is true, that is, cos(k +1)7 =
(—1)’“’1. To this end, we write cos(k +1)7t = cos(km +7t) = cos kwr cos r — sin ksin o =

(cos km)(~1)- 0 = (~1)¥(=1) = (-1 *!. Hence, P(n) is true for all n EN.
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(J) Suppose P(n) is the statement “ LA n +—- is an integer for every n €N .” Then P(1) is true. Next,
J pp T ry
5 3

suppose P(k) is true for some k €N, that is, ~kg_—+~§—+ 1 is an integer. We will show that P(k +1)

5 3
(k+D®  G+D)® TGh+1)
3 15
G+ G+’ T+D) K+ SK 41000 4 10k2 1 Ske1 | K+ 324 3k41 | ThAT
5 3 15 5 3 15

K (a3 o0 N1 K a1 Tk T (K Tk
—5—+(k +2k7 + 2k +k)+§+?+(k +k)+—+—+ 5 + 3 +15 +

is an integer. To this end, using Pascal’s triangle, we write

1s true, that 1s,

3 15 15
(k4 +2k% +3%% + 2% + 1). This is an integer since the sum of integers is an integer. Hence, P(n) is true

forall n €EN.

(k) Suppose P(n) is the statement “(n — 1)(n)n + 1) is divisible by 6 for every n €N .” Then P(1) is true.
Next, suppose P(k) is true for some k €N, that is, (k — )(k)(k +1) is divisible by 6. We will show
that P(k +1) is true, that is, k(k + 1)k + 2) is divisible by 6. To this end, we write k(k + 1Xk +2)

- +3k 42k =(k3 - k)+ {3k2 + 3k) —(k - 1Xk)(k +1)+ 3(k2 + k). Since (k - (k)& +1) is
divisible by 6; and by Exercise 2(a), k% + k is divisible by 2, k(k + 1 Xk + 2) is a sum of two integers
divisible by 6 and so, it is divisible by 6. Hence, P(n) is true for all n EN.

(1) Suppose P(n) is the statement “n~ —n is divisible by 5 for every n €N.” Then P(1) is true. Next,
suppose P(k) is true for some & €N, that is, k> —k is divisible by 5. We will show that P(k +1) is
true, that is, (k + 1)° —(k + 1) is divisible by 5. To this end, we write (k +1)° —(k +1)=
K45k +106% 41087 + 5k + 1k~ 1= (k% ~k)+5(k* +24 + 267 + k), which is a sum of two
integers, each divisible by 5. Thus, (k + 1)5 —(k +1) is also divisible by 5. Hence, P(n) is true for
all n EN.

(m) Suppose P(n) is the statement “2%**! +1 is divisible by 3 for every n €N.” Then P(1) is true. Next,
suppose P(k) is true for some k EN , that is, 22**! + 1 is divisible by 3. We will show that P(k + 1)
is true, that is, 22%¥*3 +1 is divisible by 3. To this end, we can write 2272 +1= 2212?41
4(2%+1 +1) -3, which is divisible by 3 since both terms are. Hence, P(n) is true for all n €N .

X{+Xp+ -+

(n) Suppose P(n) is the statement “a = X1 < b.” Then P(1) is true since a < x; < b . Next,

n

Xy +Xo+ 42X ) Xp+Xo+ 4+ X 4+X
——1————2—’(——isb.Wew1H show that g s=17=2 ) k7 7kt)
+

= b. Since induction hypotheses imply that ka < xj + xp + - +xp s kb,and since a s xg 4 s b,
addition gives ka + as xy + x3 + *** + X} + X1 s kb + b. Division by k +1 yields the desired result.
Hence, P(n) is true forall n €N.

suppose for some k EN, a=

(o) Suppose P(n) is the statement “ " z% for all n €N ” Then P(1) is true. Next, suppose P(k) is
n+
true for some k €N, that is, L = l We will show that P(k +1) is true, that is, k+l = l Since
k+1 2 k+2

K2+ 2d+12k? 42k , we have that (k + 1)(k +1) = k(k +2). Since each term is positive, this gives

k+1 z--ﬁ* Thus mli—t—l—aé—.Hence, P(n) is true for all n EN .

. Thus,
k+2 k+1 k+2

2n n-2
(p) Suppose P(n) is the statement “0 < gy = 2(-3*) for all natural numbers n = 3.” Then P(3) is true.
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Next, suppose P(k) is true for some integer k =3, that is, 0< ik 2(5) . We will show that
2k+1 2 k-1 k+1 2k2

P(k + 1) is true, that is, 0 < = 2(—) . To this end, we write 0 < = =
(k+1)! 3 k+1 (KYk+1)

k-2 k-2 k-1
2 2 2 2 2
2(-5) (m) s 2(—3—) (3) = 2(5) . Hence, P(n) is true for all n = 3.

(q)

(s)

(t)

(u)

(v)

"
Suppose P(n) is the statement “ Ek(k!) =(n+1)!-1forall n €N.” Then P(1) is true. Next, suppose
k=1

k

P(k) is true for some k EN, that is, Ei(i!) =(k+1)!-1. We will show that P(k + 1) is true, that is,
i=1

k+l l k+1 k

Zi(i!) = (k+2)!-1. To this end, we write Ei i = 2i(i!)+ k+Dk+ D=

i=1 i=1 iml

[k +D1=1]+ (k + Dk +1)!=[(k + D1+ (k +D]-1=(k +2)!-1. So, P(n) is true for all n EN .

n
Suppose P(n) is the statement “ 2 1/_“ >+/n for all natural numbers n = 2.” Then P(2) is true. Next,
k=1

k

suppose P(k) is true for some k = 2, that is, E-l— > JE . We show that P(k + 1) is true, that is,
l=1

k+l k+1

1
E -\/k +1. To this end, we writc 2 k + ——. We need to show that
.=nf J' 1/ vk +1

1-]

Vi + 1/k]_1 = vk +1. In order to do this, note that +/k+1 > -\/I; for k = 2. Now multiply both sides by
+

-\/E to get -\/E-\/k+1 > k, which gives ﬁ1/k +1+1>k+1. Division by ~Jk+1 yields the desired

expression. Hence, P(n) is true for all n 2 2.

n

Suppose P(n) is the statement 2—’:—2- < 2—— for all n €N .” Then P(1) is true. Next, suppose P(k)
k=1
k k+]

is true for some k£ €N, that is, E 1 < 2“; We will show that P(k + 1) is true, that is, 2-—— =
i=1! i=1!

kil & 1,1 1 1 1
2——— To this end, we can write 2 2 St——3 — 2t > < 2-——, because
k+1 l-=ll l_]l (k+1) k (k+1) k+1

1 1
—— =—
k (k+1)2 k+1’

, which is true because K vk+l= k +k.Hence, P(n) is true for all n EN .

Suppose P(n) is the statement 2 5 S % 1 for all natural numbers n 22.” Then P(2) is true.

k=1K
Next, suppose P(k) is true for some integer k = 2, that is, 2— < %—-}1; We will show that P(k +1)
i=l!
k+1 k+l1 k
i
is true, that is, » — lzsl—L To this end, we write 2 ! =>= 12 — _r 711 >
it 4 k+l Zi* 50T k? 4k k4D

7 1 1 1

because — - 1
4 k+1 ko (k+1)? "kl
istrue forall n 2 2.

, Which in turn is true because kKrak+lzk? +k. Hence, P(n)

n .
Suppose P(n) is the statement “ 2 2% <3- ——15 for all natural numbers n = 2.” Then P(2) is true.
k=1 n
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(w)

(a)

(b)

(a)
(b)

(d)

(e)

(f)

(g)

(h)

k
Suppose P(k) is true for some integer & = 2, that is, 22L3 < 3—-%—. We will show that P(k +1) is
i-1f k
k+1 1 k+1 k+1 1 2
true, that is, 22—<3— 2.To this end, we write 22 E 3__2+____§
=1t k+1) i=1i ,=lz (k+1) ke (k+1)

< 3—6(-—1——2», which is true because k> + k2 +3k +1= k> + k2. Hence, P(n) is true for all n = 2.
+1)

n
Suppose P(n) is the statement E ! et forall n EN . Then P(1) is true. Next,
i Ck=-1D2k+1D)  2n+1

J 1 k

suppose P(k) is true for some £ €N, that is, = .
ppose F(k) El(zi_l)(znl) 2k +1

We will show that P(k +1) is

k+1 1 k+l k+1 1 k 1
true, that is, - = . Thus we have that 2 - = +
i @2i-D2i+1 2k+3 SQi-DEi+]l) S Qi-DQ2i+])
1 = k + L = k+l . Hence, P(n) is true for all n €N
[2(+D)-11{2k+D+1] 2k+1 QRE+DQCE+3) 2k+3
2 xn+1_l 5
From Example 1.3.4 we have 1+x+x°+ -+ +x" = N ,if x =1, Therefore, —x —x~ =+ - x"
‘ X -
- n+l . n+l n+l n+l
1= 1 Hence, l-x-x?eox®=2-X L x7 z2xtl ) 1=X e xml Of
. x—1 B x-1 1-x 1-x
x =1, then the desired sum has the value | — 7.
30 . 19
2/«2 S k2 - Sk%=9,455-2,470 = 6,985.
ku20 kel k=1
15

(H) n! (") n!
=—— =1and —— =
0 OH(n -0 n) (nYn-n)!

n n! n n! n! n
=——— and thus, = = =
(k) kN(n - k)! (n—k) nm-RDn-m-BI! "R-IEDH (k)

3 e [ ) 3 e ( )(1" =a-n"=0"=0.
k=0 k=0
From the binomial theorem, where g =2, b =—x, and n =7, the term with x3 is given by

(;)24 (—x)3 =—560x°>.

n(n—l)+n(n—l)(n—2)+ el nn-1)n-2)
2

, since we dropped onl
6 P PP Yy

2" —(1+1)" =14+n+

nonnegative terms.

arl (P} (n+] n+ly n+1
A+ = o + 1 X+ + r x+---+n+1 *1 and (1+x)" (1+x)~

[( " l)+(n)}x" + (n)x"”. Now, since (1+x)"*! = (1 + x)"(1+ x), equate coefficients to obtain the
n— n n

desired relation.
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50
i) 214224 a2 o142 e 22 4 g 29) oo 122 _ofa50 ).
(i) =)

i)

m_ne-D@-2)- (= k=D) _a@m @ _nt
k| k! k! R

(b) (+x)" =1+nx+ln(n—l)x2+ -+ x" =1+ nx, since all other terms are = 0.

7 n
(a) Suppose P(n) is the statement “a, < (Z) ” and use Theorem 1.3.9. Clearly, P(1) and P(2) are true.

Next, let k£ be any integer such that k& > 2 and suppose P(i) is true for all i =1,2, ...k, that is,
' 7

7 i k+1
a; < (Z) for positive integer i = k. We need to show that P(k + 1) is true, that is, @z, < (Z) . To

i 4 o a asa <1k+lk_l_lk_1_7_+1<lk_llz_lkHH
1S €nd, W€ WrIle dr,} k k-1 4 4 4 a 4 4 4 . Hence,

P(n) is true for all n EN .

(c) Suppose P(n) is the statement “a, < a,;.” Then P(1) is true. Next, suppose P(k) is true for some
k €N, that is, g <ag.. We will show that P(k + 1) is true, that is, az,1 < @ .2 . To this end, we

write ag,| =-\/3ak +1 < 1/3a,c+1 +! =a;, +. Hence, P(n) is true for all n EN.

(h) Method of Example 1.3.12 does not require that the explicit formula be found by trial and error and then
q P )
proven by induction. Set a, = ¢r" in the recursion formula a,,,, = gan —ga,,_l , and rewrite it to

= %cr" -lcr"‘l. Next, since ¢ = 0, divide both sides by ™! to obtain r? = %r —%.

obtain ¢r™*!

. . . 1 1 c c . .
Solutions of this equation are r = ~2- and r = 5 Thus, a, = 2—,11 or d, = 5,2;- , Where the previous ¢ 1s

C]

. c
now denoted by ¢; or ¢s. In fact, g, can be written as @, = 2—n +;,21— . Next, we need to find ¢; and c3.

By knowing the first two terms of the sequence, we find that ¢ =0 and ¢; = 3. Thus,
o 3 1

= — e —=

an  gn 3n—1 .

n

x1+x2+---+x,,)s

In order to prove Jensen’s inequality, we will prove that if P(n) is the statement “ f (
n

S{xn) + F(x2) + - + f(xa)

,” then statements (a) and (b) in Theorem 1.3.13 are satisfied. Step 1. We will use

Theorem 1.3.2 to prove that P(z'") is true for every m €N . So, if m = 1, we see that P(2) says that

f(xl ;xz)s f(x,);f(xz)

, which is true since f is convex. Next we suppose P( Zk) is true for some

Xy +Xg + ---+x2k)s f(x1)+f(x2)+---+f(x2x)

positive integer k, that is, f [ , and we show that P(2k+l)

2k 2k
) Xy FXn b A e F Xp o H o wxen ) S(E)FF(x2)+ o+ flx
is true, that is, f( 1772 2 k+12 +1 2 l]s ST ( 2 ).Tothis end, we
2
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10.

e R I L Sl = P
2 2 s_ 1
=f + = fl—+—|, (where
2 2 2 2 (

XpHXp 4+ X +x2k+l+---+x2m]

write f ( N

Sste[a,b],byExerciseZ(n)),sﬂs);_f(t). %[ x1+x2+ CH Xy )+f( ol 2k-+x2,ﬂ. )]S

l[f(x1)+f(x2)+ +f(x2k)+ f(x2k+1)+ . (xzm )]_ F(x)+ fx)+ - +f(x2m)

, which is what

we wanted to verify. Hence, part (a) of Theorem 1.3.13 is satisfied.
Step 2. We will prove that part (b) of Theorem 1.3.13 is satisfied. Thus, suppose P(k) is true for some
X1+ Xg+
k-1

Xy Xp b Xy T T e Flx)+ f(x2)+ -+ fxhe l)+f(f'-tﬁ——lf~f"i)

k=1
7 = 3 . Now, observe that

+x .
k-l [a.b], we can write that

k €N and show P(k —1) is also true. Therefore, since

X e LA
X+ X3 +Xpp t 1 _f(x1+x2+-“

k k-1

. +XE1 L .
we can write J ) thus, the previous inequality

¥y +xy+ "‘+xk-1)sf(x1)+f(x2)+ "°+f(xk—1)+ lf(X1+xz+ "'+xk—l) This
k-1 k k k-1 '
can be written as, kol f(xl AL +xk‘1)s f(x1)+f(x2)+ +f(xk'1)
k k—1 k
f(xl +Xp+ ‘”‘k-l)s FOe)+ F{xo)+ o+ fxpy)
k-1 k-1
1.3.13, P(n) is true forall n EN .

can be written as f (

, which gives

. Therefore, part (b) is proven. Hence, by Theorem

Procedure 1. Prove this result using Theorem 1.3.13, that is, use steps similar to the ones we used in Exercise
8.
Procedure 2. Use Exercise 8 with f(x) =—Inx. To prove f is convex we need Theorem 1.8.4, part (¢),

and the fact that In x is an increasing function.

(a) The desired sum produces (n+1) +(n+ 1) + -+ +(n +1)=2S. Thus, n(n+1)=2S, and s0, § =22
(b) Since (k+ 1)2 k% =2k+1 , we have that E[(k + 1) - kZ] E (2k +1). Now, expanding the left-hand
k=1 k=1

side due to the telescoping nature of the sum we get that E[(k +)2- kz] = (2 -—12) +(32 - 22) +
k=1

n H
+ [(n+1)2 —n2] =@+ 1)2 ~1=n%+2n.But 2(2k+l) = 22k+n. Thus, equating the above we get

k=1 k=l
H n 2
n’+2n= 22k+n. Solving we obtain that Ek 4rr =_n(n +1) .
k=1 k=1 2
n
(¢) Observe that (k+1)° - k> = 3>+ 3k+ 1. Thus, expend both sides of Z[(k +1)° - k3] -

k=1

n n n
E(Bkz +3k+ 1) and use the fact that Y k = in order to find ), k2.
k=1 k=1 k=1

nn+l)
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1. (c¢) There exists € >0 such that for each & > 0 there is x €D such that 0 <|x-a|<8 and |F(x)-Al=e.

2. We prove the contrapositive, that is, we prove that if g is not multiple of 3, then q2 is not a multiple of 3.
Therefore, if g =3n+1, then q2 =(3n+ l)2 = 9n2 +6n+1= 3(3n2 +2n)+ 1, thus not a multiple of 3. If

g =3n+2, then q2 =3n+ 2)2 =9n +12n+4= 3(3n2 +4n+ 1)+ 1, thus again not a multiple of 3.

3. Suppose p:the sum is even, and g : two positive integers have the same parity, are two statements. We need
to prove p <> gq.
) To prove p=>q, we prove ~g=>~ p. Thus, assume that positive integers ¢ and s are not of the

same parity. Thus, one of them, say ¢, is odd and the other, that is s, is even. Therefore, there exist
nonnegative integers m and n such that t=2m+1 and s=2n. Then, t+5=2(m+n)+1 is odd. Hence, ~ p

holds, which proves that p=>gq.

(«=) Suppose two positive integers ¢ and s have the same parity. Then ¢ and s are both even or both
odd. If 7 and s are both even, there exist positive integers m and n such that ¢=2m and s=2n. Then,
t+s=2(m+n) iseven. If ¢ and s are both odd, there exist nonnegative integers m and n such that
t=2m+1 and s=2n+1. Again, 1+5=2(m+n+1) is even. So, in both cases the sum of ¢ and s is even.

2
4. (a) Suppose A3= £, where p and g are integers with no common factors. Then, 3= -PT Hence,
q q

p2 = 3q2. So, p2 is a multiple of 3. By Exercise 2, p is a multiple of 3. Thus, there exists an integer
k, such that p = 3k. This gives p2 =942 . Now, since p2 = 3q2 , combining we have that 9k% = 3q2,
which reduces to q2 = 3k% . Therefore, q2 is a multiple of 3 implying that g is a multiple of 3. But this
contradicts the assumption that p and ¢ have no common factors.

2
(b) Suppose -\/g = £, where p and ¢ are integers with no common factors. Then, 6 = -‘?7 Hence, p2 =
q q

6q2. So, p2 is a multiple of 2. Therefore, p is a multiple of 2. Continue the proof similarly to the
above.

(c) First we prove that if p is odd then p3 is odd. To this end, we write p =2r +1, for some integer r.
Then, p3 =(2r+ 1)3 =8 +12r% v 6r+1= 2(4r3 +6r% 4 3r)+ 1, which is odd. Next, suppose
:VE =£, where (p,q) =1. Then, p3 = 2q3. So, p3 is even, which implies p is even, by the
q

contrapositive of the first statement we proved. Thus, there exists an integer k such that p =2k . This
gives p3 =83, Now, since p3 = 2q3, combining we have that 2q3 = 8k3, which implies that q3 is

even, and thus, g even. Contradiction since (p, q) =1. Hence, 32 is irrational.

(d) Suppose 2 ++/3 = r, r rational. Squaring and simplifying we get 2+ 2+/6 + 3 = r2. Therefore,

2
V6 = r > > , that is, /6 is rational. This is a contradiction to part (b).

7. Assume Theorem 1.3.2 holds and let § be some nonempty subset of N. We wish to prove that § has a least
element, that is, we wish to show that there exists s €S such that s s x forall x €S. We prove this by
assuming to the contrary that S has no least element. Note that 1 €S since otherwise it would be the least

element of §. Now, define theset T by T = {n N |n <xforallxe S}, and let P(n) be the statement

“n €T .” Observe that P(l) is true since 1 < x for all x €S . Next, suppose P(k) is true for some k €N, that
is, K €T. Thus, k < x for all x €S. We will prove that P(k + 1) is true by assuming to the contrary

thatk + 1 ¢¢T . Therefore, there exists zy €S such that £, <k +1. Since § has no least element, there exists

# €8 such that 1 <. Since ty and # are integers, this gives fj <k +1 and # s k, which contradicts the
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fact that k <x for all x €S. Hence, k+1 €T and so P(k +1) is true. Thus, by the mathematical induction,
P(n) is true for all n €N, and so, T = N. Now, since we assumed that § = ¢, there exists 5o €5. But, since

so is a positive integer, so €T, which implies sy < sg . This contradiction proves that § must have a least
element.

Suppose §= {n EN |P(n) is false} . We will assume S = ¢ in order to get a contradiction. Thus, if S= ¢, by
the well-ordering principle, S has a least element, say, 1. By hypothesis (a), P(n) is true for every integral

power of 2. Therefore, there exists some s &N such that 2% »t.Letd=2"—t. Now, if P(¢++ 1) is true, by
hypothesis (b), we would have P(7) true, which is not the case. But, if P(¢+1) is false, then P(¢+2) is

false, as well as P(t+4), ... ,P(¢ +d). However, t+d = 2%, meaning that P(Z“) is false, a contradiction.
Hence, S = ¢ and thus, P(n) is true for all n EN .

Section 1.5

1.

5.

10.

11

12.

14

15.

Show that (feg)x)=x and (ge fx)=x-

Let f(x)=y. f odd implies that f(~x)=-f(x)=-y. Since f_1 exists, f(x) =y implies that
f_l(y) = x. Thus, f(-x)=-y= f_l(—y) =-x= —f_l(y). Therefore, f_1 is odd. This statement is true if
R is replaced by an interval (-a, a).

Even functions are not one-to-one, thus not invertible. Odd functions that are one-to-one are invertible.
Show that f_1 = f and that g_1 =g,

Yes, since f'l =g.

Result follows from Exercises 22(c) and 22(d) of Section 1.2.

We only need to prove that if f: A — B is a bijection, then f 1T.B>Aisa bijection. Why? Let
- -1 -1 -1 -1 -
y1,y2 € B with £ (31)= £7(52). By Theorem 154, y1= (£ 7(3))= A{#™(52)) - y2. Thercfore, £

is an injection.
If x€ A, then f(x)E€ B. By Theorem 1.54, x= f_l(f (x)) . Therefore, f_I is a surjection. Hence,

f Tisa bijection.
ge f is a bijection by Exercise 13 of Section 1.2. We will prove that if’ 4(x) = (g o f)(x), then
A= (f o g'l)(x). This will prove the desired expression. To this end, we will show that

(h ° h_l)(x) =Xx= (hwl o h)(x)_ So we write, (h o h‘l)(x) = h(h'l(x)) = h((f‘l o g'l)(x)) -
h(f‘l(g‘l(X))) =(go f)(f’l(g—l(x))) - g(f(f—l(g—l(x)))) _ g(gq (x)) - x. Similarly, (h—l . h)(x) iy

2

. . . aT
(d) Let z=arcsin x. Then, sinz= x with ZE[—E,—]. Also, sin?z+cos?z=1= cosz=V1—-x2 . Note,

2

TR [
cosz =0 since 2 € [—5-2—] Therefore, sin2(arcsinx) =sin2z = 2sinzcosz =2xV1 - x2.

3x T ( JI')
(a) arctan|tan— |= arctan| tan| —+ st || = arctan{ tan— | =
( 4 ) 1"[ (4 )] 4

TN
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(b) xe(-%,-’;)_

Section 1.6

2.

4.

Define f:[0,1]—[a.b] by f(x)=a+ (b-a)x.

To prove part (c) of Theorem 1.6.2, suppose A~ B and B~ C . This means that there exist functions
f: A— Band g : B— C which are bijections. To show A~ C, we need to find a bijection £ from A to

C.Let us choose s =go f. Then, A : A— C and by Exercise 13 in Section 1.2, % is a bijection.

Here is an outline of a proof by contradiction. Suppose N is finite. By induction prove that a nonempty finite
subset of R contains a maximum element (and a minimum element). Now prove by contradiction that N is
unbounded.

Suppose A is countable and BC A. We will prove that B is countable. If B is finite, then B is countable.
Thus, we assume that B is infinite. In this case, A must be countably infinite. So, N~A.Let f: N — A

be a bijection with the range f(N)= {x,, In EN } . Let nj be the smallest positive integer such that x, € B.
Let ny be the smallest positive integer greater than n; such that x,, € B. By induction we have that B =

{xnl X, } Hence, N ~ B which completes the proof.

(a) Define f:(0,) = (-11) by f(x)=2x-1.
(b) Define g: (-1, —R by g(x)=tanl£-x.

(c) Use Theorem 1.6.2, part (c).

Recall that Q is countable. To prove that $R \@Q is uncountable, assume to the contrary. Then Q U (R\ Q) is
countable by part (b) of Theorem 1.6.7. But this is a contradiction because R is uncountable.

Section 1.7

1.

To prove the uniqueness of the multiplicative identity, which exists by Axiom (A6), suppose there are two,
say 1; and l,. Therefore, a*1y =a-1; = a forall a €F. Thus, if @ =1, we have 15 -1y =15, andif a =1,
we have 1 - I; =1;. Due to Axiom (A2) we have 1; =1, , meaning that the multiplicative identity is unique.

To prove part (b) of Theorem 1.7.2, observe that F contains an additive and multiplicative inverses of a .
To prove an additive inverse of a is unique, we assume @ has two additive inverses, say « and v. Then
u+a=0and v+a=0.Thus, u=0+u=(v+a)+u=v+(a+u)=v+0=v. Since u = v, the additive
inverse must be unique.

To prove that (-1)a = —a, start with 1 +(-=1) =0. Then, [1+(-Dl=0-a s a+(-1)a=0 <«
a+(-Da+(-a)=0+(-a)e a+(-a)+(-Da =-a <> 0 +(-1)a= ~a < (- )a = -a. Or, simply argue that
since @ +(-)a=1-a+(-1)-a= (1 + (—1))a =0-a =0, the conclusion follows by part (a) of Theorem 1.7.2.

To prove part (¢), note that since 0 =0-a= d[b + (-b)]=ab+ a(- ), a(-b)) is an additive inverse of
ab . But, so is —(ab). Since additive inverses are unique, we have a(-5) = —(ab). Similarly we can prove

the second equality.
By definition ~(-a) is the additive inverse of ~a. Also, a is the additive inverse of —~a. Due to

uniqueness, a = —(-a).

Suppose ab =0. If a =0, there is nothing to prove. If & =0 then a has the multiplicative inverse -1—
a

Thus, -l—(ab)=l(0)¢[—1—(a) b=0<1b=0<b=0,
a a a
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(a) Since 0 =(-a)-0 =(-a)b+(-b)] =(-a)b +(—aX—-b), (—a)-b) is the additive inverse of (—a)b. But,

(—a)b = —(ab). So, (—a)-b) and ab are additive inverses of (—a)b . Due to uniqueness, they are equal.
(b) a+b=c+b=(@a+b)+(-b)=c+b+(-b)=a+[b+(-b)]l=c+[b+(-b)l=a+0=c+0 <+ a=c.
(¢ —(a+b)=(-1Xa+b)=(-Da+(-1)o=—-a-b.

(@) Sincea=0, l exists. Suppose that l =0. Then we have 1=a i = g -0 =0, which contradicts the
a a a

1
uniqueness of the additive identity. Suppose that 1 = 0. Then by Axiom (A7), T is a multiplicative
a ]

inverse of —. Since a is also a multiplicative inverse of a, by uniqueness the desired equality holds.
a

(a) Suppose ¢ > 0. Then, a +(-a)> 0+ (~a), which gives 0 > —a, and thus —a<0.

(b) By Axiom (A9) we have 3 possibilities: 0 =1, 0 <1, or 0 > 1. Due to uniqueness of the additive
identity, 0 =1 is not a possibility. Suppose 0 > 1. Then by part (a) we have 0 < -1, which gives
0(~1)<(~1X~1). Thus, 0 < 1. But this is contradictory to our assumption. Hence, the only possibility

is that 0 <1.
(e) According to Theorem 1.7.2, part (c), since ab > 0, neither a or b is zero. So, by Axiom (A9), either

a>0 or a<0. Suppose a > 0. Then by Theorem 1.7.4, part (d), 1 > 0. Therefore, b =1-b =
a

1 1 1 1
(—'a)b=;'(ab)>0. Hence, b > 0. Next, suppose a <0 . Then, l<0 and b=(;~a)b=;'(ab)

a a
<0.Hence, b <0.

(e) Suppose 0 <a<b. Then, by Theorem 1.7.4, part (d), 1 >0 and %> 0. Suppose 1 < % Then,
, a a

—1- (ab) < %(ab) which gives b < a, a contradiction. Hence, % < l
a a

Suppose a,b,c €F such that @ <& and ¢ < 0. We prove that ac > bc. Since ¢ <0, then —¢ > 0. Thus, by
Axiom (A12) we have a(-c) < b(—c) which yields —ac < —bc. By part (a) of Theorem 1.7.4 we have
—(-ac) > —(-bc), which by part (f) of Theorem 1.7.2 yields the desired result.

To prove part (c) of Theorem 1.7.4, suppose a is a nonzero element of . By Axiom (A9) we have
a <0 ora>0. Suppose a <Q. Then, —a> 0 and by Axiom (A12) we get (—a)(-a)>0(-a)=0. But,

(a)-a)=(-D@)-Da)=(-1)X-1XaXa) = at. Thus, a’s0. Next, suppose a > 0. Then by Axiom
(A12), (a)(a) > 0(a) =0. Again, a2 >0.

Suppose a > 0. Then, by Axiom (A9), a = 0. Therefore, by Axiom (A7), —L = (. Suppose that —1— <{.
a a
1 1
Then, by part (b) of Theorem 1.7.4, we have a(;—) < 0(:1*) = 0. But this yields 1 < 0, a contradiction.
Therefore, l > 0.
a

The result follows from Axiom (A12) and Exercise 3(¢).
We need to show Axioms (A1) through (A12) are satisfied. Verification of Axioms (A1)—(AS&) is left to the

reader. The order relations are based on “<.” We define a < b for a, b €0 by requiring existence of ¢ €Q so
that a +¢ = b . With this in mind the reader can prove that Axioms (A9)—(A12) are also satisfied.

Let T ={—s|s€S}. If m is alower bound of §, then s =z m for all s €S. Thus, —-s= -m forall s €S,

Hence, —m is an upper bound of T. Similarly, if a is an upper bound of T, then —a is a lower bound of §.
Now, by Axiom (A13), T has a least upper bound, say k. We will prove — & = inf §. To this end, observe
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10.

11.

12.

13.

that ~ % is a lower bound of S. Let r be any other lower bound of §. Then —r is an upper bound of T' and
k = —r, since k =supT. Therefore, r <~k which implies that —£ is indeed the greatest lower bound of S.

Suppose M, and M, are two least upper bounds of A. Therefore, M; and M, are upper bounds of A. Now,
since M; =sup A, we have M} < M, . Also, since My =sup A, we have M, < M. Hence, My =M.

(=>) Suppose & =supS where S is a nonempty subset of R and let £ >0 be an arbitrary real number.
Then, k — £ < k and thus & — ¢ is not an upper bound of §. Therefore, there exists s €S such that
k-eg<ssk.

(=) Suppose that § is a nonempty subset of R, k is an upper bound of §, and for each £ >0 there
exists s €85 such that k - € <s. Now, suppose that M <k and pick £ =k - M. Then, £ >0 and by
hypotheses there exists s €5 such that k — (k — M) < s, that is, M < 5. Therefore, M is not an upper bound

of §.However, since M is an arbitrary number smaller than & , we must have that k& = supS.

To prove (a)=>(b), let z= l. Then by part (a), there exists n €N such that »n > l. This implies y < nx.
X X
To prove (b) =>(c), let y =1 in part (b). Then we have 1 < nx , which gives —1— < x. This gives part (c). To
n
prove (c¢)=>(d), we assume to the contrary that N is unbounded above by some real number r, that is,

n <r for all n €N . Then, by Exercise 3(e), 1 < 1 for all n €N . This is a contradiction to hypothesis in the
r n

1 . . ..
casc x =—. To prove (d)=> (¢), consider the set § = {m EN |x < m} Since x is a fixed positive real
n

number, by part (d) we know that § = ¢ . Let n be the least element guaranteed by the well-ordering principle.
Then, n—1&S and hence, (e) follows. To prove (¢) = (a), we observe that the sccond inequality in (e} is
indeed what (a) states. Hence, all statements are equivalent.

Suppose a is a rational number and b is an irrational number. To prove that ab is irrational, we assume to
. . . . . 1 1 . .
the contrary that ab is rational. But then, since a is rational so is — and thus, — (ab) = b is rational, due to
a a
the fact Q is a field. Contradiction to the hypothesis.

First, we prove that (g, b) contains a rational number where a,b €R . To accomplish this we consider 3 cases.
Case 1. Suppose 0 <a<b. By Corollary 1.7.9, part (b), with x=b-a and y =1 we know that there exists

.
n*>a .By

n* €N such that 1 < n*(b - g), which gives wl—;<b—a.Now define the set S={MEN
n

Theorem 1.6.8, S = ¢ , and by the well-ordering principle, S has the least element, say, ng . Then, —n—O; >a
n
-1 .
and 202 2 4. Furthermore, 2% < d ia< (b-a) + a=b. Hence, the rational number —2 € (a, b).
n* n* n* n*

Case 2. Suppose @ =0 < b. By Corollary 1.7.9, part (c), there exists n* €N such that —1*- <b. Thus,
n

L* is a rational number in (a, b).
n
Case 3. Suppose a <b=0. Then, 0 < —b < —a, and by the preceding discussion, there exists a rational

number r E(-b,-a). Hence, a rational number —r is in (a, b).
Now we prove that (a, b) contains an irrational number. If a < b, there exists a nonzero rational number

r in the interval [-2,-2 |. Why? Thus, <= <7 <2 So, a <rv/2 <b. But, by Exercise 11, 72 is
V2’2 V2 V2 y

irrational, and so the proof is complete.

(©) s={xEQ+

s 2}. Note that 1 &S, so § = ¢ . In order to prove that § has no least upper bound, we
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14.

15.

16.

will show that the set T of all upper bounds, T = {x Q" x? > 2} , has no least element. Note that

T » ¢, because 2 €T . In fact, if @ €T and b > a, then b” > ab > a® > 2, implying that b ET. Now,
suppose k is the least element of T. Then, % is a positive rational number, and k2> 2. Next, if

2k
x= ;2——2, by the Archimedean order property, there exists n €N such that x < n. In addition, by

Exercise 3(e), we have that —!- < Th Therefore, -2—15- <k*-2 , which gives k* ——z—k > 2, and hence,
n n n
2 2 2
2k 1 1 -
kz——+—2> 2. This gives (k——) > 2, where, k—l>k— k-2 _k fz > 0. This means that a
n n n 2k 2k

.. . 1 \ .
positive rational k——&T . However, k —l <k, and k is the least element of T . Contradiction. Hence,
n n

T has no least element, and thus, S has no least upper bound.
In order to show that Q is not a complete ordered field, we need to show, by a counterexample, that the
completeness axiom does not hold in @. To this end, choose a set, say, §= {x ER\Q |0 sSXxs '\ﬁ} S is
bounded, nonempty, and has no least upper bound in the set of rational numbers. Or, use the set

S= {x eQt|x?= 2} from Exercise 13(c).

Let §= {x ER*[x? < 2}. From the proof given for Exercise 13(c), we have § nonempty and bounded. Thus,

by the completeness axiom, § has the least upper bound. Let & = supS ER ™. We will prove that kr=2 by

showing that k2 <2 or k2 > 2 are not possible. Case 1. If k* <2, then k &S.. Also, since 1 €S, then
k = 1. We will show that there exists an element in § larger than & , which will contradict the fact that

2k +1
k = sup§. To this end, observe that if x= ﬁ , then, by the Archimedean order property, there exists

2
n €N such that x < n. In addition, by Exercise 3(¢), we have that 1 < 2-k

. Thus, > (2k+1)<2—k2,
n 2k+1 n

2 1
which implies that -25 + l <2-k2, Using Exercise 5, we have that 7 t—5< 2- kz, and so
n n n

2
2k 1 1
k? +7+—2< 2, which in turn gives (k+—) < 2. Therefore, k+—l-E S. But, k =supS. Thus, a
n n n
contradiction. Therefore, k*<2 isnota possibility.
Case 2. f k*>2 , then contradiction follows by the argument we used in the proof of Exercise 13(c).

Hence, k2 =2,

If x =32 +/3, then using similar steps to those in part (b) we get x®— 9x* —4x> + 27x% + 36x- 23 =0.
Since this polynomial has only integer coefficients, all real solutions are algebraic, this includes x = ¥2+43.

Section 1.8

1.

s

-1
+ayq” )
Therefore, g divides a, p" . Since (p,q) =1, g cannotdivide p and so it cannot divide p”. Thus, g divides

a e

n
Since £ is a root of apx” + a1 x" '+ -+ ax+ag =0, we have an(ﬁ) +a,,_1(
q q
n

v

+ap =0. Multiply by ¢" and rearrange to obtain a, p” = —q(a,,,_lp"'1 +: +apq
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a,, . Similarly we can write apg” = - a,,p"“1 +a,_y "ok rappg" alq"_l and verify that p
0q p n-1P 4 2Pq

must divide ag .

f (x) r(x)

, Where

()+

degree of the polynomial r is less than n. Therefore, f(x) =(x — c)p(x)+ r(x). If f (c) 0, then r(c) 0
and so x —c divides f(x).If x —c divides f(x), then r(x) =0 soclearly, f(c)=0.

2. Suppose f(x)=a,x" +a,,_1x"_l + - +ax+ag, with g, =0 and ¢ ER. Then,

3. (a) Suppose f(x)= xt—ax® +2x% +8x-8. By Theorem 1.8.1, the only possible choices for a rational
rootof f are +8, 24, +2, and 1. Since f(2) =0, by Exercise 2 we know that x -2 divides f(x).

Indeed, long or synthetic division gives f(x) = (x — 2*)\: —2x% ~2x+ 4) . Next, we factor

glx) = x> —2x% =2x +4 . All of the choices for a rational root are +4, 2, and +1. Since g(2) =0,
x -2 divides g(x). Indeed, g(x) = (x - 2)( X - 2) . Hence, f(x)=(x- 2)2(x - ﬁ)(x +J§) . Therefore,
fxX)=0if x=2,2, 42, and —+/2. The value x =2 is a “double” root.

(b) Suppose f(x)= 9x° —30x% +28x-8. By Theorem 1.8.1, the only possibilities for a rational root of f
p p

are ¥4 where p is a divisor of — 8 and g is a divisor of 9. This gives :%, i%, =8, :%,

1%,14,1%,1%,:2,:%,:%,and:l. Since f{2) =0, x -2 divides f(x). Thus, f(x) =

(x - 2)(9x2 ~12x + 4), which gives f(x) = (x — 2X3x-2)?. Hence, f(x)=0 if x=2 or %

2
4. () x*+d=xtrar’ia-axt- (x2 +2) — 4yt =(x2 +2- 2x)(x2 + 2+2x)
(b) Since p(x) = 4x% — 2x -1 does not readily factor, we use the quadratic formula to solve p(x)=0.

Since the solution is x=%(1¢1/§), p(x) can be factored as p(x)=4[x—%(1+’\/§)][x—%(l—v\/§)]=

1 1
[2x—-2-(1+‘\/§)][2x—5(1—'\/§)].
(e¢) Use the rational root theorem.

(e) x7+1=(x+1)(x6—x5+x4—x3+x2—-x+1)

H x —1=(x—1Xx4+x3+ x2+x+l)

5. (a) Since x® - x 2 6 can be written as (x —3)x +2)=0, we want all the values of x which will make the
terms x -3 and x +2 of the same sign. Thus, we solve x-3=20 and x+2 =0 to get x=3. Also,
x~-3=0 and x+2 <0 give x =-2, The union gives the set of all the requested values,

(b) Factor the given expression to get (x + 1)Xx ~ 2)(x +3) < 0. Now consider cases.

(d) Preferred procedure is to subtract 3 from both sides and consider cases.

6. (a) Let x= ii— be a rational number. Then, 3/3x = /2. Next, take 6th power to get, 9x° = 8. Therefore,

i3

X = % satisfies the equation 9x6 - 8=0. Thus, by Theorem 1.8.1, 1/5 must divide -8 and -}/5 must

divide 9. Since this is not the case, x is not rational.
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12.

13.

14.

(b) If x=3Z-+3, then 42 = x++/3. Cubing gives, 2= x> +3y3x%+9x+ 3/3. So, 2-9x-x3 =
31/§(x2 + 1). Squaring gives, x®-oxt —ax® + 2767 —36x-23=0.1f x =32 —+f3 is rational, then it

must divide —23. Since this is not the case, /2 —~f3 is irrational.

Suppose x = B, where p, g€ Z, with g = 0. Then, x satisfies gx - p=0, and so it is algebraic, Converse is
q
false. Note that 1/5 is not rational but it satisfies x2 -2 =10, so it is algebraic.

Consider equation x" —a =0. Then, x =&/ is a solution of this equation. If it is rational, then by the
rational root theorem, it divides a . Hence, it is an integer, say, k. Now, if #fa is an integer k , then @ = k".

2 2
(b) Consider V2 J—. Case 1. Suppose '\EJ— is rational. Then, choose a =+/2 and B= V2. Case 2.
V2
2 2 V2
Suppose -\5 "2 is irrational. Then, choose a = ‘\EJ— and B = 42, because then af - (‘\5 ) =
2 -
(1/5) =2, rational.

(a) Onlyif f(x)=0.
(b) No. It may seem that f(x) = sinl is oscillatory since it has infinitely many roots. But, they are not
x

bounded.

. sin x . .
(c) sinx and —— are two examples of oscillatory functions.
x .

Proof of part (b). Suppose a, b > 0 and let the statements be (i) a < b, (ii) a®? <b?, and (i1i) Va <+b . We
will prove (i) <> (ii) and (i) <> (iii). So sup gose a<b.Then, b+a>0and b-a>0. Thus, by Ax1om
(Al2), (b + a)(b —a)> 0. Therefore, bt -a* > 0, which implies that (ii) holds. Now suppose a < b

Thus, we have b —d* = (b +aXb-a)>0. Since b+ a >0, by Exercise 3(c) of Section 1.7 we have
b—a > 0. Hence, (i) holds. The fact that (i) < (iii) follows from the fact that (i) <> (ii) if we replace a by

Ja and b by +fp.
2
Proof of part (c). By Theorem 1.7.4, part (c), we have that (-J; - 1/17) = 0. Note that a,b = 0.
Therefore, g— 2-\/ab +b=0. Thus, the result follows.

Proof of part (d). Since @, & =0 we have ab =0, a +b =0, and a’ + b s a® +2ab+b* = (a+b)°.
Now apply Theorem 1.8.4, part (b).

Suppose a > b and pick a particular ¢, say e=a—;b. Since a - € < b, then a~ a-b < b, which is

equivalent toa<bh. Hence, a contradiction.
(b) Suppose a,b ER such that |a|>b=0. (=) If >0, then a=|a|>b If a <0, then, —a =la|>b. So,

a<—b.Now, whatif <07 («=) If 220, then |g|=a>5.1f a <0, then |a|=~a. Since a <-b, we

have Ial =-ax>bh,

(c) Ifa=z0, then |a|=a=w/a_2. If a <0, then Ja|=-a =(-a)? a?.
@ latf=iaty? =Va? =«/_2~/_2 -[elih.

(e) First we prove that |b| for b =0.If b >0, then, by Theorem 1.7.4, part (d), - > 0. Thus,
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1l 1 1 1 1‘ (1) 1 1 , _
=—=—_If b <0, then — < 0 and thus, |~|=—|=|=—=1=. Now we multiply both sides of
H N b b | i

b b

1 1
IZ’ = ]b—l by |a| and apply Theorem 1.8.5, part (d), to get the desired result.

15. (a) Square both sides (see Theorem 1.8.4, part (b)).
(b) Square both sides.
(c) Use Exercise 14(b).
(d) Square both sides or use Theorem 1.8.5, part (b).
(f) Do not divide by 0.
(g) Solve the same way as (h).

2 2 2
16. OsVa2+b2sa+b¢a2+bzs(a+b)2¢(1[a_2) +(\/b_2) sH(a+b)2] ©|a|2+|b|25|a+b|2_

17. (a) By the triangle inequality we have |a}=|(a - ) + | <|a —B|+[b|. Thus, |a|-[p|=|a-4]. Or, simply, replace
a by a —b in the triangle inequality.
(b) Since |p|=|(®—a)+a|<|p—al|+|a|=|a - b +|a|, we have -|a— | <|a|~ |o|. Therefore, using part (), we
have —la - b| = Ial- Ibl = |a - bi , which by Theorem 1.8,5, part (b), gives the desired result.

18. (a) By the triangle inequality for any x,y €ER, we have |x+ yls |x|+|y|. If x=a-cand y=c-b, this is
equivalent to (@ —¢)+ (c - b)| s|a — | +|c -4, which is what we wished to prove.
(b) Notethat c=b >0, b-a>0, and ¢ —a >0. Thus, |a-B|+|p—c|=p-d|+f-b|=b-a)+ c-b) =
c-a =|a-c|
19. Since [f(x)| =M for all x €[a, b], by Theorem 1.8.5, part (b), we have —M =< f(x) = M . Therefore, if x;

and x, are any elements in [a,b], then -M < f (xl )s Mand -M=< f (xz) = M, which is equivalent to
-M=-f (xz) = M . Combining these gives the result.

n n n
21, (a) Since Y (aay +[3bk)2 = 0 for any real values & and B, we choose a = E(bk)2 and B =~ azby .
k=1 k=1 k=1

n n n n
But, Y (aay + ;)" =a? 3 (ap)’ +208 D arhy + B2 D(b)” = 0. Thus,
k=1 k=1 k=1 k=1

-i(bk)z.zfj(ak)%z i(bk)z][«-iakbk]iakbk+(— S akbk]z ﬁ(bk)2 =0. Thus,

Lk=1 1 k=1 k=1 k=1 k=1 k=1 k=1
r n 2- Hn 3 Ji] 2 n 2 n 2 n 2

SO [ @) D(a) -2 Saghi| +| Dagbe| t=0. Since ¥ (b;)" =0 we have
L&=1 1[Lk=1 k=1 k=1 k=1 k=1

. Other methods of

Slar

k=1

[ n 2- n 2 n 2 n 2 n 2
E(bk) Z(ak) ]—[Eakbk] =0. Therefore, (Eakbk} s E(bk)
J k=1 k=1 k=1 k=1
(]
proof include induction or considering the discriminant of a polynomial P(x) = E(akx—bk)z .
k=1

4 2 % 2 2] N2, % < (5 )2
(b) Since, using part (2), 3.(ay +by) =2[(ak) +2a3by +(be) ]= S(ae)? +2 S aby+ Sbe)
k=1 k=1 k=1 k=1 k=1
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s, 1)
(ak)z] +[2(bk)2} , the result follows.

im)z+z[i(ak)ﬂ$:<bk)zr+z(bk)2= 3

k=1 k=1 k=1 k=1 k=1 k=l
—biVb2—4aC
22, (e) x=27
a

23. Rationalize the numerator in Exercise 22(e).

2 2 2 .2
24. Wrte f(x) as, f(x)=a(x2+£)—xJ+c=a )|c2+-llx+--l-’—2 +c—a b—2 =a(x+i) wf’ﬂ_
a a 4a 4a

25, Case 1. Suppose x < -21. The distance of x to L is b x . Therefore, we need to show that
a

2a 2a
flx)= f(x+ 2(—1 - x)) that is, f(x)= f(—x —L). But, f(—x ——b—) =..=f(x).
2a 2a 2a

b
Suppose x > ——b—. The distance of x to -L is x— (— —") Therefore, we need to show that
2a 2a 2a

fx)= f(x - 2[1— (—-2%)]), that is, f(x)= f(-x— %) This holds by Case 1.

27. Complete the square to get two straight lines,

28. a=-b also works.
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