
  1   

 
PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights reserved.  No part of this Manual 
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the 
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their 
individual course preparation.  If you are a student using this Manual, you are using it without permission. 

CHAPTER 1 
 
1.1 You are given the following differential equation with the initial condition, v(t = 0) = 0, 
 

2dcdv
g v

dt m
   

 
Multiply both sides by m/cd 
 

2

d d

m dv m
g v

c dt c
   

 

Define / da mg c  

 

2 2

d

m dv
a v

c dt
   

 
Integrate by separation of variables, 
 

2 2
dcdv

dt
ma v


   

 
A table of integrals can be consulted to find that 
 

1
2 2

1
tanh

dx x

a aa x


  

 
Therefore, the integration yields 
 

11
tanh dcv

t C
a a m

    

 
If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and the solution is 
 

11
tanh dcv

t
a a

 
m

 

 
This result can then be rearranged to yield 
 

 tanh d

d

gcgm
v t

c m

 
   

 
 

 
1.2 (a) For the case where the initial velocity is positive (downward), Eq. (1.21) is 
 

2dcdv
g v

dt m
   

 
Multiply both sides by m/cd 
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2

d d

m dv m
g v

c dt c
   

 

Define / da mg c  

 

2 2

d

m dv
a v

c dt
   

 
Integrate by separation of variables, 
 

2 2
dcdv

dt
ma v


   

 
A table of integrals can be consulted to find that 
 

1
2 2

1
tanh

dx x

a aa x


  

 
Therefore, the integration yields 
 

11
tanh dcv

t C
a a m

    

 
If v = +v0 at t = 0, then  
 

1 01
tanh

v
C

a a
  

 
Substitute back into the solution 
 

1 1 01 1
tanh tanhdc vv

t
a a m a

  
a

 

 
Multiply both sides by a, taking the hyperbolic tangent of each side and substituting a gives, 
 

1
0tanh tanhd

d

gc cmg
v t

c m mg
 

 
 

d v              (1) 

 
(b) For the case where the initial velocity is negative (upward), Eq. (1.21) is 
 

2dcdv
g v

dt m
   

 

Multiplying both sides of Eq. (1.8) by m/cd and defining / da mg c  yields 

 

2 2

d

m dv
a v

c dt
   
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Integrate by separation of variables, 
 

2 2
dcdv

dt
ma v


   

 
A table of integrals can be consulted to find that 
 

1
2 2

1
tan

dx x

a aa x


  

 
Therefore, the integration yields 
 

11
tan dcv

t C
a a m

    

 
The initial condition, v(0) =  v0 gives 
 

1 01
tan

v
C

a a
  

 
Substituting this result back into the solution yields 
 

1 1 01 1
tan tandc vv

t
a a m a

  
a

 

 
Multiplying both sides by a and taking the tangent gives 
 

1 0tan tandc v
v a a t

m a
   

 
 

 
or substituting the values for a and simplifying gives 
 

1
0tan tand

d

gc cmg
v t

c m mg
 

 
 

d v              (2) 

 
(c) We use Eq. (2) until the velocity reaches zero. Inspection of Eq. (2) indicates that this occurs when the 
argument of the tangent is zero. That is, when 
 

1
0tan 0d d

zero
gc c

t v
m mg

   

 
The time of zero velocity can then be computed as 
 

1
0tan d

zero
d

cm
t v

gc m
 

g
 

 
Thereafter, the velocities can then be computed with Eq. (1.9), 



  4   

 
PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights reserved.  No part of this Manual 
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the 
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their 
individual course preparation.  If you are a student using this Manual, you are using it without permission. 

tanh ( )d
zero

d

gcmg
v

c m

 
 

 
t t               (3) 

 
Here are the results for the parameters from Example 1.2, with an initial velocity of –40 m/s. 

 

168.1 0.25
tan ( 40) 3.470239 s

9.81(0.25) 68.1(9.81)zerot   
     

 
 

 
Therefore, for t = 2, we can use Eq. (2) to compute 
 

168.1(9.81) 9.81(0.25) 0.25 m
tan (2) tan ( 40) 14.8093

0.25 68.1 68.1(9.81) s
v  
    

 
   

 
For t = 4, the jumper is now heading downward and Eq. (3) applies 
 

68.1(9.81) 9.81(0.25) m
tanh (4 3.470239) 5.17952

0.25 68.1 s
v

 
   

 
  

 
The same equation is then used to compute the remaining values. The results for the entire calculation are 
summarized in the following table and plot: 
 

t (s) v (m/s) 
0 -40 
2 -14.8093 

3.470239 0 
4 5.17952 
6 23.07118 
8 35.98203 
10 43.69242 
12 47.78758 

-40

-20

0

20

40

60

0 4 8 12

 
 
1.3 (a) This is a transient computation. For the period ending June 1: 
 
Balance = Previous Balance + Deposits – Withdrawals + Interest 
 
Balance = 1512.33 + 220.13 – 327.26 + 0.01(1512.33) = 1420.32 
 
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:  
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Date Deposit Withdrawal Interest Balance 
1-May    $1,512.33 

 $220.13  $327.26  $15.12   
1-Jun    $1,420.32 

 $216.80  $378.61  $14.20   
1-Jul    $1,272.72 

 $450.25  $106.80  $12.73   
1-Aug    $1,628.89 

 $127.31  $350.61  $16.29   
1-Sep    $1,421.88 

 

(b) ( ) ( )
dB

D t W t iB
dt

     

 
(c) for t = 0 to 0.5: 

220.13 327.26 0.01(1512.33) 92.01
dB

dt
       

(0.5) 1512.33 92.01(0.5) 1466.33B      

 
for t = 0.5 to 1: 

220.13 327.260 0.01(1466.33) 92.47
dB

dt
       

(0.5) 1466.33 92.47(0.5) 1420.09B      

 
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:  
  

Date Deposit Withdrawal Interest dB/dt Balance 
1-May $220.13  $327.26  $15.12 -$92.01 $1,512.33 

16-May $220.13  $327.26  $14.66 -$92.47 $1,466.33 
1-Jun $216.80  $378.61  $14.20 -$147.61 $1,420.09 

16-Jun $216.80  $378.61  $13.46 -$148.35 $1,346.29 
1-Jul $450.25  $106.80  $12.72 $356.17 $1,272.12 

16-Jul $450.25  $106.80  $14.50 $357.95 $1,450.20 
1-Aug $127.31  $350.61  $16.29 -$207.01 $1,629.18 

16-Aug $127.31  $350.61  $15.26 -$208.04 $1,525.67 
1-Sep     $1,421.65 
 

(d) As in the plot below, the results of the two approaches are very close. 
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1.4 At t = 12 s, the analytical solution is 50.6175 (Example 1.1). The numerical results are: 
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step v(12) absolute relative error 
2 51.6008 1.94% 
1 51.2008 1.15% 

0.5 50.9259 0.61% 
 
where the relative error is calculated with 
 

analytical numerical
absolute relative error  100%

analytical


   

 
The error versus step size can be plotted as 
 

0.0%

1.0%

2.0%

0 0.5 1 1.5 2 2.5

relative error

 
 
Thus, halving the step size approximately halves the error. 
 
1.5 (a) The force balance is 
 

'dv c
g v

dt m
    

 
Applying Laplace transforms, 
 

'
(0)

g c
sV v V

s m
     

 
Solve for  
 

(0)

( '/ ) '/

g v
V

s s c m s c m
 

 
              (1) 

 
The first term to the right of the equal sign can be evaluated by a partial fraction expansion, 
 

( '/ ) '/

g A B

s s c m s s c m
 

 
              (2) 

 
( '/ )

( '/ ) ( '/ )

g A s c m Bs

s s c m s s c m

 


 
  

 
Equating like terms in the numerators yields 
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0

'

A B

c
g A

m

 


  

 
Therefore, 
 

'
           

' c

mg
B

c

mg
A    

 
These results can be substituted into Eq. (2), and the result can be substituted back into Eq. (1) to give 
 

/ ' / ' (0)

'/ '/

mg c mg c v
V

s s c m s c m
  

 
  

 
Applying inverse Laplace transforms yields  
 

( '/ ) ( '/ )(0)
' '

c m t c m tmg mg
v e v e

c c
      

or 

 ( '/ ) ( '/ )(0) 1
'

c m t c m tmg
v v e e

c
      

 
where the first term to the right of the equal sign is the general solution and the second is the particular 
solution. For our case, v(0) = 0, so the final solution is 
 

 ( '/ )1
'

c m tmg
v e

c
    

 
Alternative solution: Another way to obtain solutions is to use separation of variables, 
 

1
'

dv dt
c

g v
m




    

 
The integrals can be evaluated as 
 

'
ln

 
'/

c
g v

m
t C

c m

  
      

 
where C = a constant of integration, which can be evaluated by applying the initial condition 
 

'
ln (0)

 
'/

c
g v

m
C

c m

  
     

 
which can be substituted back into the solution 
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' '
ln ln (0)

  
'/ '/

c c
g v g v

m m
t

c m c m

     
    



   

 
This result can be rearranged algebraically to solve for v, 
 

 ( '/ ) ( '/ )(0) 1
'

c m t c m tmg
v v e e

c
     

 
where the first term to the right of the equal sign is the general solution and the second is the particular 
solution. For our case, v(0) = 0, so the final solution is 
 

 ( '/ )1
'

c m tmg
v e

c
    

 
(b) The numerical solution can be implemented as 
 

12.5
(2) 0 9.81 (0) 2 19.62

68.1
v

      
  

12.5
(4) 19.62 9.81 (19.62) 2 32.0374

68.1
v

      
  

 
The computation can be continued and the results summarized and plotted as: 
 

t v dv/dt 
0 0 9.81 
2 19.6200 6.4968 
4 32.6136 4.3026 
6 41.2187 2.8494 
8 46.9176 1.8871 
10 50.6917 1.2497 
12 53.1911 0.8276 
 58.0923  

 

0

20

40

60

0 4 8 12
 

 
Note that the analytical solution is included on the plot for comparison. 
 

1.6   )1(
'

)( )/'( tmce
c

gm
tv   

jumper #1: (12/70) 99.81(70) m
( ) (1 ) 44.99204

12 s
v t e    
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jumper #2: (15/80)9.81(80)
44.99204 (1 )

15
te   

 
0.187544.99204 52.32 52.32 te   

0.18750.14006 te  
ln 0.14006

10.4836 s
0.1875

t  


 

 
1.7  Note that the differential equation should be formulated as 
 

dcdv
g v v

dt m
   

 
This ensures that the sign of the drag is correct when the parachutist has a negative upward velocity. Before 
the chute opens (t < 10), Euler’s method can be implemented as 
 

0.25
( ) ( ) 9.81

80
v t t v t v v t

        
 

 
After the chute opens (t  10), the drag coefficient is changed and the implementation becomes 
 

1.5
( ) ( ) 9.81

80
v t t v t v v t

        
 

 
Here is a summary of the results along with a plot: 
 

Chute closed  Chute opened  
t v dv/dt t v dv/dt 
0 -20.0000 11.0600 10 51.5260 -39.9698 
1 -8.9400 10.0598 11 11.5561 7.3060 
2 1.1198 9.8061 12 18.8622 3.1391 
3 10.9258 9.4370 13 22.0013 0.7340 
4 20.3628 8.5142 14 22.7352 0.1183 
5 28.8770 7.2041 15 22.8535 0.0172 
6 36.0812 5.7417 16 22.8707 0.0025 
7 41.8229 4.3439 17 22.8732 0.0003 
8 46.1668 3.1495 18 22.8735 0.0000 
9 49.3162 2.2097 19 22.8736 0.0000 

   20 22.8736 0.0000 

-40

-20

0

20

40

60

0 5 10 15

 
 
1.8 (a) The first two steps are 
 

(0.1) 100 0.175(10)0.1 98.25 Bq/Lc      
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(0.2) 98.25 0.175(98.25)0.1 96.5306 Bq/Lc      

 
The process can be continued to yield 
 

t c dc/dt 
0 100.0000 -17.5000 

0.1 98.2500 -17.1938 
0.2 96.5306 -16.8929 
0.3 94.8413 -16.5972 
0.4 93.1816 -16.3068 
0.5 91.5509 -16.0214 
0.6 89.9488 -15.7410 
0.7 88.3747 -15.4656 
0.8 86.8281 -15.1949 
0.9 85.3086 -14.9290 
1 83.8157 -14.6678 

 
(b) The results when plotted on a semi-log plot yields a straight line 

4.4

4.5

4.6

0 0.2 0.4 0.6 0.8 1
 

The slope of this line can be estimated as 
 
ln(83.8157) ln(100)

0.17655
1


    

 
Thus, the slope is approximately equal to the negative of the decay rate. If we had used a smaller step size, 
the result would be more exact. 
 
1.9 The first two steps yield 
 

2450 450
(0.5) 0 3 sin (0) 0.5  0 ( 0.36) 0.5 0.18

1250 1250
y

          
 

2450 450
(1) 0.18 3 sin (0.5) 0.5  0.18 ( 0.11176) 0.5 0.23508

1250 1250
y

            
 

 
The process can be continued to give the following table and plot: 
 

t y dy/dt t y dy/dt 
0 0.00000 -0.36000 5.5 1.10271 0.17761 

0.5 -0.18000 -0.11176 6 1.19152 -0.27568 
1 -0.23588 0.40472 6.5 1.05368 -0.31002 

1.5 -0.03352 0.71460 7 0.89866 0.10616 
2 0.32378 0.53297 7.5 0.95175 0.59023 

2.5 0.59026 0.02682 8 1.24686 0.69714 
3 0.60367 -0.33849 8.5 1.59543 0.32859 

3.5 0.43443 -0.22711 9 1.75972 -0.17657 
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4 0.32087 0.25857 9.5 1.67144 -0.35390 
4.5 0.45016 0.67201 10 1.49449 -0.04036 
5 0.78616 0.63310    

 

-0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10

 
 
1.10 The first two steps yield 
 

1.5
2450 150(1 0)

(0.5) 0 3 sin (0) 0.5 0 0.12(0.5)  0.06
1250 1250

y
 

       
 

 

1.5
2450 150(1 0.06)

(1) 0.06 3 sin (0.5) 0.5 0.06 0.13887(0.5) 0.00944
1250 1250

y
 

        
 

 

 
The process can be continued to give 
 

t y dy/dt t y dy/dt 
0 0.00000 -0.12000 5.5 1.61981 0.02876 

0.5 -0.06000 0.13887 6 1.63419 -0.42872 
1 0.00944 0.64302 6.5 1.41983 -0.40173 

1.5 0.33094 0.89034 7 1.21897 0.06951 
2 0.77611 0.60892 7.5 1.25372 0.54423 

2.5 1.08058 0.02669 8 1.52584 0.57542 
3 1.09392 -0.34209 8.5 1.81355 0.12227 

3.5 0.92288 -0.18708 9 1.87468 -0.40145 
4 0.82934 0.32166 9.5 1.67396 -0.51860 

4.5 0.99017 0.69510 10 1.41465 -0.13062 
5 1.33772 0.56419    

-0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10
 

 
1.11 When the water level is above the outlet pipe, the volume balance can be written as 
 

2 1
out3sin ( ) 3( )

dV
t y y

dt
   .5  
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In order to solve this equation, we must relate the volume to the level. To do this, we recognize that the 
volume of a cone is given by V = r2y/3. Defining the side slope as s = ytop/rtop, the radius can be related to 
the level (r = y/s) and the volume can be reexpressed as  
 

3
23

V y
s


  

 
which can be solved for 
 

2
3 3s V

y


                       (1) 

 
and substituted into the volume balance 
 

1.5
2

2 3
out

3
3sin ( ) 3

dV s V
t

dt 

 
  

 

y 


               (2) 

 
For the case where the level is below the outlet pipe, outflow is zero and the volume balance simplifies to  
 

23sin ( )
dV

t
dt

                      (3) 

 
These equations can then be used to solve the problem. Using the side slope of s = 4/2.5 = 1.6, the 

initial volume can be computed as 
 

3 3
2

(0) 0.8 0.20944 m
3(1.6)

V


   

 
For the first step, y < yout and Eq. (3) gives 
 

2(0) 3sin (0) 0
dV

dt
    

 
and Euler’s method yields 
 

(0.5) (0) (0) 0.20944 0(0.5) 0.20944
dV

V V t
dt

       

 
For the second step, Eq. (3) still holds and 
 

2(0.5) 3sin (0.5) 0.689547
dV

dt
    

(1) (0.5) (0.5) 0.20944 0.689547(0.5) 0.554213
dV

V V t
dt

       

 
Equation (1) can then be used to compute the new level, 
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2
3 3(1.6) (0.554213)

1.106529 my


      

 
Because this level is now higher than the outlet pipe, Eq. (2) holds for the next step 
 

 1.5
(1) 2.12422 3 1.106529 1 2.019912

dV

dt
       

(1.5) 0.554213 2.019912(0.5) 2.984989V     

 
The remainder of the calculation is summarized in the following table and figure. 
 

t Qin V y Qout dV/dt 
0 0 0.20944 0.8 0 0 

0.5 0.689547 0.20944 0.8 0 0.689547 
1 2.12422 0.554213 1.106529 0.104309 2.019912 

1.5 2.984989 1.564169 1.563742 1.269817 1.715171 
2 2.480465 2.421754 1.809036 2.183096 0.29737 

2.5 1.074507 2.570439 1.845325 2.331615 -1.25711 
3 0.059745 1.941885 1.680654 1.684654 -1.62491 

3.5 0.369147 1.12943 1.40289 0.767186 -0.39804 
4 1.71825 0.93041 1.31511 0.530657 1.187593 

4.5 2.866695 1.524207 1.55031 1.224706 1.641989 
5 2.758607 2.345202 1.78977 2.105581 0.653026 

5.5 1.493361 2.671715 1.869249 2.431294 -0.93793 
6 0.234219 2.202748 1.752772 1.95937 -1.72515 

6.5 0.13883 1.340173 1.48522 1.013979 -0.87515 
7 1.294894 0.902598 1.301873 0.497574 0.79732 

7.5 2.639532 1.301258 1.470703 0.968817 1.670715 
8 2.936489 2.136616 1.735052 1.890596 1.045893 

8.5 1.912745 2.659563 1.866411 2.419396 -0.50665 
9 0.509525 2.406237 1.805164 2.167442 -1.65792 

9.5 0.016943 1.577279 1.568098 1.284566 -1.26762 
10 0.887877 0.943467 1.321233 0.5462 0.341677 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

V y
 

 
1.12  

students
J s kJ

35 ind 80 20 min 60 3,360 kJ
ind s min 1000 J

Q        

3

3

Mwt (101.325 kPa)(11m 8m 3m 35 0.075 m )(28.97 kg/kmol)
314.796 kg

(8.314 kPa m / (kmol K)((20 273.15)K)

PV
m

RT

   
  


 

students 3,360 kJ
14.86571 K

(314.796 kg)(0.718 kJ/(kg K))v

Q
T

mC
     
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Therefore, the final temperature is 20 + 14.86571 = 34.86571oC. 
 

1.13   in outM  - M 0 
 
Food Drink Air In Metabolism Urine Skin Feces Air Out Sweat

Drink Urine Skin Feces Air Out Sweat Food Air In Metabolism

Drink 1.4 0.35 0.2 0.4 0.3 1 0.05 0.3 1.3 L

       
       
        

 

 
1.14 (a) The force balance can be written as: 
 

2

2
(0)

( )
d

dv R
m mg c v

dt R x
  


v  

 
Dividing by mass gives 
 

2

2
(0)

( )
dcdv R

g v v
dt mR x

  


 

 
(b) Recognizing that dx/dt = v, the chain rule is 
 
dv dv

v
dt dx

  

 
Setting drag to zero and substituting this relationship into the force balance gives 
 

2

2

(0)

( )

dv g R

dx v R x
 


 

 
(c) Using separation of variables 
 

2

2
 (0)

( )

R
v dv g dx

R x
 


 

 
Integrating gives 
 

2 2

 (0)
2

v R
g C

R x
 


 

 
Applying the initial condition yields 
 

2 2
0  (0)
2 0

v R
g C

R
 


 

 
which can be solved for C = v0

2/2 – g(0)R, which can be substituted back into the solution to give 
 

22 2
0 (0) (0)

2 2

vv R
g g R

R x
  


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or 
 

2
2
0 2 (0) 2 (0)

R
v v g g

R x
   


R  

 
Note that the plus sign holds when the object is moving upwards and the minus sign holds when it is 
falling. 
 
(d) Euler’s method can be developed as 
 

2

1 12

(0)
( ) ( ) (

( ) ( )
i i i

i i

g R
v x v x x x

v x R x
 

 
    

  
)i  

 
The first step can be computed as 
 

6 2

6 2

9.81 (6.37 10 )
(10,000) 1,500 (10,000 0) 1,500 ( 0.00654)10,000 1434.600

1,500 (6.37 10 0)
v

 
        

  
 

 
The remainder of the calculations can be implemented in a similar fashion as in the following table 
 

x v dv/dx v-analytical 
0 1500.000 -0.00654 1500.000 

10000 1434.600 -0.00682 1433.216 
20000 1366.433 -0.00713 1363.388 
30000 1295.089 -0.00750 1290.023 
40000 1220.049 -0.00794 1212.475 
50000 1140.643 -0.00847 1129.884 
60000 1055.973 -0.00912 1041.049 
70000 964.798 -0.00995 944.206 
80000 865.317 -0.01106 836.579 
90000 754.742 -0.01264 713.299 

100000 628.359 -0.01513 564.197 

 
For the analytical solution, the value at 10,000 m can be computed as 
 

6 2
2 6

6

(6.37 10 )
1,500 2(9.81) 2(9.81)(6.37 10 ) 1433.216

(6.37 10 10,000)
v


    

 
 

 
The remainder of the analytical values can be implemented in a similar fashion as in the last column of the 
above table. The numerical and analytical solutions can be displayed graphically. 

0

400

800

1200

1600

0 20000 40000 60000 80000 100000

v-analytical

v-numerical
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1.15 The volume of the droplet is related to the radius as 
 

34

3

r
V


                        (1) 

 
This equation can be solved for radius as 
 

3
3

4

V
r


                        (2)   

 
The surface area is 
 

24A r                        (3) 
 
Equation (2) can be substituted into Eq. (3) to express area as a function of volume 
 

2/3
3

4
4

V
A 


   
 

      

 
This result can then be substituted into the original differential equation, 
 

2/3
3

4
4

dV V
k

dt



    
 

                    (4) 

 
The initial volume can be computed with Eq. (1), 
 

3 3
34 4 (2.5)

65.44985 mm
3 3

r
V

 
    

 
Euler’s method can be used to integrate Eq. (4). Here are the beginning and last steps 
 

t V dV/dt 
0 65.44985 -6.28319 

0.25 63.87905 -6.18225 
0.5 62.33349 -6.08212 

0.75 60.81296 -5.98281 
1 59.31726 -5.8843 

• 
• 
• 

  

9 23.35079 -3.16064 
9.25 22.56063 -3.08893 
9.5 21.7884 -3.01804 

9.75 21.03389 -2.94795 
10 20.2969 -2.87868 

 
A plot of the results is shown below. We have included the radius on this plot (dashed line and right scale): 
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0

20

40

60

80

0 2 4 6 8 10

1.6

2

2.4V r

 
 

Eq. (2) can be used to compute the final radius as 
 

3
3(20.2969)

1.692182
4

r


   

 
Therefore, the average evaporation rate can be computed as 
 

(2.5 1.692182) mm mm
0.080782

10 min min
k


   

 
which is approximately equal to the given evaporation rate of 0.08 mm/min. 
 
1.16  Continuity at the nodes can be used to determine the flows as follows: 

 
3

1 2 3 0.7 0.5 1.2 m sQ Q Q      
3

10 1 1.2 m sQ Q   
3

9 10 2 1.2 0.7 0.5 m sQ Q Q      
3

4 9 8 0.5 0.3 0.2 m sQ Q Q      
3

5 3 4 0.5 0.2 0.3 m sQ Q Q      
3

6 5 7 0.3 0.1 0.2 m sQ Q Q      

 
Therefore, the final results are 
 

1.2

0.20.20.7

0.30.5

1.2 0.5 0.3

0.1

1.2

0.20.20.7

0.30.5

1.2 0.5 0.3

0.1

 
 

1.17 The first two steps can be computed as 
 

 
 

(1) 70 0.019(70 20)  2 68 ( 0.95)2 68.1

(2) 68.1 0.019(68.1 20)  2 68.1 ( 0.9139)2 66.2722

T

T

       

       
 

 
The remaining results are displayed below along with a plot of the results. 
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t T dT/dt t T dT/dt 
0 70.00000 -0.95000 12.00000 59.62967 -0.75296 
2 68.10000 -0.91390 14.00000 58.12374 -0.72435 
4 66.27220 -0.87917 16.00000 56.67504 -0.69683 
6 64.51386 -0.84576 18.00000 55.28139 -0.67035 
8 62.82233 -0.81362 20.00000 53.94069 -0.64487 

10 61.19508 -0.78271    

50

60

70

80

0 5 10 15 20
 

 
1.18 (a) For the constant temperature case, Newton’s law of cooling is written as 
 

0.135( 10)
dT

T
dt

    

 
The first two steps of Euler’s methods are 
 

(0.5) (0) (0) 37 0.12(10 37)(0.5) 37 3.2400 0.50 35.3800

(1) 35.3800 0.12(10 35.3800)(0.5) 35.3800 3.0456 0.50 33.8572

dT
T T t

dt
T

         

      
 

 
The remaining calculations are summarized in the following table: 
 

t Ta T dT/dt 
0:00 10 37.0000 -3.2400 
0:30 10 35.3800 -3.0456 
1:00 10 33.8572 -2.8629 
1:30 10 32.4258 -2.6911 
2:00 10 31.0802 -2.5296 
2:30 10 29.8154 -2.3778 
3:00 10 28.6265 -2.2352 
3:30 10 27.5089 -2.1011 
4:00 10 26.4584 -1.9750 
4:30 10 25.4709 -1.8565 
5:00 10 24.5426 -1.7451 

 
(b) For this case, the room temperature can be represented as 
 

20 2aT t   

 
where t = time (hrs). Newton’s law of cooling is written as 
 

0.12( 20 2 )
dT

T t
dt

     

 
The first two steps of Euler’s methods are 
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(0.5) 37 0.12(20 37)(0.5) 37 2.040 0.50 35.9800

(1) 35.9800 0.12(19 35.9800)(0.5) 35.9800 2.0376 0.50 34.9612

T

T

      
      

 

 
The remaining calculations are summarized in the following table: 
 

t Ta T dT/dt 
0:00 20 37.0000 -2.0400 
0:30 19 35.9800 -2.0376 
1:00 18 34.9612 -2.0353 
1:30 17 33.9435 -2.0332 
2:00 16 32.9269 -2.0312 
2:30 15 31.9113 -2.0294 
3:00 14 30.8966 -2.0276 
3:30 13 29.8828 -2.0259 
4:00 12 28.8699 -2.0244 
4:30 11 27.8577 -2.0229 
5:00 10 26.8462 -2.0215 

 
Comparison with (a) indicates that the effect of the room air temperature has a significant effect on the 
expected temperature at the end of the 5-hr period (difference = 26.8462 – 24.5426 = 2.3036oC). 
 
(c) The solutions for (a) Constant Ta, and (b) Cooling Ta are plotted below: 

24

28

32

36

40

0:00 1:00 2:00 3:00 4:00 5:00

Constant Ta

Cooling Ta

 
 
1.19 The two equations to be solved are 
 

2dcdv
g v

dt m
dx

v
dt

 


 

 
Euler’s method can be applied for the first step as 
 

20.25
(2) (0) (0) 0 9.81 (0) (2) 19.6200

68.1

(2) (0) (0) 0 0(2) 0

dv
v v t

dt

dx
x x t

dt

        
 

     
 

 
For the second step: 
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20.25
(4) (2) (2) 19.6200 9.81 (19.6200) (2) 19.6200 8.3968(2) 36.4137

68.1

(4) (2) (2) 0 19.6200(2) 39.2400

dv
v v t

dt

dx
x x t

dt

          
 

     
 

The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
 

t x v dx/dt dv/dt 
0 0.0000 0.0000 0.0000 9.8100 
2 0.0000 19.6200 19.6200 8.3968 
4 39.2400 36.4137 36.4137 4.9423 
6 112.0674 46.2983 46.2983 1.9409 
8 204.6640 50.1802 50.1802 0.5661 

10 305.0244 51.3123 51.3123 0.1442 

0

20

40

60

0 2 4 6 8 10

0

100

200

300

v x  
 
1.20 (a) The force balance with buoyancy can be written as 
 

1

2 d
dv

m mg v v AC V
dt

g     

 
Divide both sides by mass, 
 

1
2

dACdv V
g v v

dt m m

    
 

 

 
(b) For a sphere, the mass is related to the volume as in m = sV where s = the sphere’s density (kg/m3). 
Substituting this relationship gives  
 

1
2

d

s s

ACdv
g v v

dt V


 

 
   

 
 

 
The formulas for the volume and projected area can be substituted to give 
 

3
1

4
d

s s

Cdv
g v v

dt d


 

 
   

 
 

 
(c) At steady state (dv/dt = 0),  
 

23

4
s d

s s

C
g v

d

  
 

 
 

 
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which can be solved for the terminal velocity 
 

4

3
s

d

gd
v

C

 

 

  
 

 

 
(d) Before implementing Euler’s method, the parameters can be substituted into the differential equation to 
give 
 

2 21000 3(1000)0.47
9.81 1 6.176667 13.055556

2700 4(2700)(0.01)

dv
v v

dt
      
 

 

 
The first two steps for Euler’s method are 
 

2

2

(0.03125) 0 (6.176667 13.055556(0) )0.03125 0.193021

(0.0625) 0.193021 (6.176667 13.055556(0.193021) )0.03125 0.370841

v

v

   

   
 

 
The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
 

t v dv/dt 
0 0.000000 6.176667 

0.03125 0.193021 5.690255 
0.0625 0.370841 4.381224 
0.09375 0.507755 2.810753 
0.125 0.595591 1.545494 

0.15625 0.643887 0.763953 
0.1875 0.667761 0.355136 
0.21875 0.678859 0.160023 

0.25 0.683860 0.071055 

 

0.0

0.2

0.4

0.6

0.8

0 0.0625 0.125 0.1875 0.25
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