Chapter 1: The Beginning

1.

What is the difference between a dedicated and general-purpose computer?
SOLUTION

A dedicated computer is constructed to solve a specific problem and cannot be used to solve other unrelated
programs. For example, a computer in a microwave oven is able to perform only operation relevant to cooking.
A computer may be dedicated because it is hardwired (i.e., its logical structure is fixed) or it may be dedicated
because its internal software (firmware) is written to solve one class of problem only. Pocket calculators and
GPS navigation systems (sat nav) are examples of dedicated computers.

A general-purpose computer can be programmed to solve any problem because its operations are determined
by a user-written program stored in its memory. The PC and Apple iMac are examples of general-purpose
computers.

Is an aircraft’s automatic pilot an example of a dedicated or a general-purpose computer?
SOLUTION

The auto-pilot is a dedicated computer because it solves only a single class of problems (controlling the
aircraft’s flight path). However, because of the complexity of the modern autopilot, it is highly probable that
there is a general-purpose computer at the heart of an autopilot. This computer uses a fixed program in read-
only memory. However, this program will be in flash memory that can be user-updated to deal with bug-fixes
and new revisions of the software.

We said that the pattern of 1s and Os used to represent an instruction in a computer has no intrinsic meaning.
Why is this so and what is the implication of this statement?

SOLUTION

There is no intrinsic or natural meaning to a binary pattern such as 11001010. Similarly, there is no natural
ordering of the bits; whether we write 11001010 or 01010011 (called Big Endian and Little Endian) is a
convention. There is no reason why the bit order can’t be 7,0,6,1,5,2,4,3 instead of 7,6,5,4,3,2,1,0 and the
pattern written as 10110001 (thus scrambling the bits).

Binary 1s and Os can be associated with anything. The 1s and Os can represent numbers, letters, names,
instructions, images, and sound — anything we want them to.

The computer designer decides how the individual bits of a computer word are grouped and what instructions
are assigned to them. For example, the first 6 bits of an instruction might define the operations, so that 000000
is ADD, 000001 is SUB, 0000010 is AND, and so on. This assignment is entirely arbitrary.

Why is the performance of a computer so dependent on a range of technologies such as semiconductor,
magnetic, optical, chemical, and so on?

SOLUTION

Consider a computer’s memory that uses the widest range of technologies. In an ideal world, a computer would
have a large quantity of low-cost, very fast, non-volatile memory. Unfortunately, fast memory such as DRAM is
expensive and volatile. Non-volatile memory such as magnetic disk is (usually) slow and cheap. Real computers
use a combined memory system that makes the computer appear as if it really did have fast, cheap non-volatile
memory. That is, by combining memories fabricated with different technologies, the computer manufacturer
can hide the negative characteristics of specific technologies.

1

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

The fastest memory is cache (usually fast static semiconductor RAM) used to hold frequently-used data. The
bulk of the immediate access memory is normally DRAM (typically 4 Gbyte today). This semiconductor dynamic
memory holds data and working programs, but is volatile and DRAM must be loaded from disk. A hard disk that
stores data by magnetizing the surface of a platter holds programs that are archived and that have to be loaded
when the user requires them. The hard disk drive is very slow but non-volatile.

Flash memory is non-volatile semiconductor memory used to hold semi-fixed data (e.g., the BIOS) and CD/DVD
is optical memory designed to allow interchangeable media.

Semiconductors themselves are the result of complex technological processes. Even the structure and chemical
composition of transistors change. New materials are constantly emerging for use in display systems.

Modify the algorithm used in this chapter to locate the longest run of non-consecutive characters in the string.
SOLUTION

At any instant you are either in a run of consecutive elements or you are not. If the current element differs from
the previous element, you are in a run of non-consecutive elements so you increment the counter and
continue. If the current element is the same as the previous element, you are no longer in a sequence of non-
consecutive elements and you clear the non-consecutive element counter.

The following presents the code both as ARM assembly language and pseudocode (to the right of the
semicolons).

AREA NonSequential, CODE, READONLY

START
ADR r8, Sequ ;Point to sequence
MOV rl, #0xFF ;Dummy old element ($SFF is not a legal element)
MOV r3,#1 ;Preset longest non-sequential element length to 1
MOV r2,#1 ;Preset current non-sequential element length to 1
Rep LDR rO, [r8,#4]! ;Repeat: read element and point to next
CMP rO, #0xFF ; If terminator
BEQ Exit ; THEN exit
CMP rl, r0 ;Are new and the last element the same?
BEQ Same
ADD r2,r2,#1 ;If not same THEN increment non-sequential counter
MOV rl, r0 ;01d element becomes new element
CMP r3,r2 ;Compare current sequence length with highest
BGE Rep ; IF lower than or same repeat (goto line ‘Rep’)
MOV r3,r2 ; ELSE save new longest run
B Rep ; and repeat
Same MOV r2, #1 ;Clear current not-in-sequence count
B Rep ; then repeat
Exit B Exit ;Termination point

Sequ oco 1,2,3,3,3,2,2,4,5,3,2,1,1,1,1,1,4,0xFF ;List for testing
END

| was once criticized for saying that Charles Babbage was the inventor of the computer. My critic argued that
Babbage’s proposed computer was entirely mechanical (wheels, gears, and mechanical linkages) and that a real
computer has to be electrical. Was my critic correct?

SOLUTION

| believe not.

2

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

There is no fundamental rule that states that a machine such as a computer must have a preferred
embodiment. A computer can be mechanical, electronic, quantum mechanical, biological, or chemical. What is
required to implement a computer (as we understand the term) is a means of:

storing information (memory),

reading information from memory,

decoding the information,

executing the instructions corresponding to this information,
writing back the information.

Moreover, for a computer to perform general-purpose tasks, it must be capable of conditional behavior; that is,
the result of one operation must select between two or more alternative courses of action. Otherwise, the
computer would always execute the same sequence of operations irrespective of the data.

Of course, a practical computer cannot be mechanical because of the slowness of moving parts compared to
electrons in solids. However, one day mechanical computer may be created by using movement at the atomic
level (e.g., changing the position of atoms in a crystal or moving nanotubes).

What is the effect of the following sequence of RTL instructions? Describe each one individually and state the
overall effect of these operations. Note that the notation [x] means the contents of memory location x.

a. [5]«2

b. [6]« 12

c. [7]«[5]+]6]

d. [6]«[7]+4

e. [5]«[[5]+4]

SOLUTION

[5] « 2 The value 2 is loaded into (memory) location 5
[6] « 12 The value 12 is loaded into location 6

[71 < [5] +[6] The sum of the contents of locations 5 and 6 are loaded into location 7. In this case, the value
2+ 12 =14 is loaded into location 7

[6] « [7]-9 The contents of location 7 (i.e., 14) minus 9 are loaded into location 6; that is, location 6 is
loaded with 5.

[5] <~ [[5]1+4] The contents of location 5 are read and then 4 is added to the result. This new value (i.e., 2 +
4 =6) is loaded into memory location 5. The contents of 6, i.e., 5, are loaded into location 5.
At the end of this code fragment [5] =5, [6] =5, [7] =14

What are the differences between RTL, machine language, assembly language, high-level language, and
pseudocode?

SOLUTION

RTL (register transfer language) is an algebraic notation used to define machine-level operations such as the
transfer of data between registers. Consider the notation:

[r6] < [r3]+4

This means that the contents of register r3 are read and 4 added to that value. The total is then copied into
register r6.

3

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

Machine language is the actual binary code executed by a computer. For example, the binary sequence
1100101000000001 might mean increment the contents of register r1. However, this meaning would apply only
to a specific computer.

Assembly language is the human-readable form of machine language; that is, it is a representation of machine
language in terms of mnemonics; for example, in a specific assembly language, MOVE .B D3, (A4) means add
the byte pointed at by register A4 to the contents of register D3. However, an assembly language normally has
special or additional features that make it easier for a programmer to generate code (e.g., the ability to
integrate libraries of functions in a program).

High-level language is a computer language that has been designed to facilitate programming. There is no link
between a high-level language and the underlying machine code. (However, it would be possible to design a
specific architecture that executed a high-level language directly). All programs written in high-level languages
have to be compiled into machine code prior to execution (or interpreted line-by-line by an interpreter during
execution). Typical high-level languages are C, Java, LISP, and Python.

Pseudocode is an informal high-level language used by programmers to express algorithms. Pseudocode is
often a sequence of operations expressed in almost plain English. For example:

Repeat
Add a new number to the total
Until all numbers have been added

What is a stored-program machine?
SOLUTION

A stored program or von Neumann machine is a general-purpose digital computer that stores programs and
data in the same memory. Instructions are processed in a two-phase cycle called fetch and execute; that is, the
instruction pointed at by the program counter (also called the instruction pointer) is read from memory,
fetched into the computer, decoded, and then executed. Since an instruction might be of the form LOAD X or
STORE Y, or ADD Z, 5, asecond memory access may take place to read or write to the operand in memory.

| would maintain that conditional behavior is the key element that makes a computer a computer. Conditional
behavior is implemented at the machine level by operations such as BEQ XYZ (branch to instruction XYZ) and
at high-level language level by operations suchas IF x == y then do THIS else do THAT.Why are
such conditional operations so necessary to computing?

SOLUTION

Without conditional behaviour, each program would consist of a sequence of operations that were always
executed in the same way every time the program was run. For example; you could build a computer to
evaluate it to 50 decimal places by using a sequence of arithmetic operations without conditional operations.

Conditional operations allow a computer to change the sequence of operations it will execute, according to the
outcome of a test. For example, when simulating a game of chess, a computer may first move each chess piece
onto a different square and then evaluate the goodness or figure of merit of that position. That calculation can
be done without conditional behavior. Suppose at a given stage of play there are seven possible moves, and the
figures of merit of the moves are 2, -3, -10, 20, 1, 0, 9 with the highest number signifying the best. In this case
the computer would select the move with the figure of merit 20 as best and then continue from that point. It is
this conditional behavior that gives the computer its great power.

4

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

11.

12.

What are the relative advantages of one-address, two-address, and three-address computer architectures?
SOLUTION

From a programmer’s point of view the difference is between elegance and verbosity. For the purpose of this
question we will assume that an address refers to a location in memory (I make this point because you could
also regard a register as an address, for example, r3, r5, r12).

A three-address machine allows you to specify three operands in a single instruction, which lets you implement
an operation like P = Q + R in the form ADD P, Q, R. Here, P, Q, and R are the three addresses of the three
operands in memory (or they could be registers). Such an instruction would access memory three times during
its execution phase.

A one-address machine specifies only one address, which means that all operations must take place between
the contents of a memory location and an implicit internal register (sometimes called the accumulator). To
execute P = Q + R we would force you to write something like

LDA P ; Load accumulator with P
ADD Q ; Add Q to P in the accumulator
STA R ; Store accumulator in R

This is inelegant code and the accumulator is a bottleneck because you have to keep loading and storing as all
data goes through the accumulator.

A two-address machine allows you to specify two operands, which means that one operand acts as a source
that is overwritten by the result. For example, ADD P, Q adds P to the contents of Q. The old contents of Q are
lost.

Although there are no three-memory-address machines, RISC processors like MIPS or ARM use a three-address
instruction format and specify three registers, for example, ADD rl1, r2, r3.

Most real computers fall into one of two categories; those that have three register addresses (like ARM and
MIPS), and those that have two addresses (like Intel’s IA32 architecture). Three-address machines must also
provide two memory access instructions, load and store, that transfer data between registers and memory.

Some two-address computers are called one and a half address machines because they use one memory
address and one register address. You could say that such a machine is essentially a one-address machine with
multiple accumulators (e.g., Intel’s IA32 series).

One-address machines are simple devices and are implemented as 8-bit microcontrollers in low-cost
applications. This course does not deal with these devices.

The relative advantages of two- and three-address machines are debatable and both processor architectures
continue to thrive. Some would argue that a three-address (RISC-style) processor should be faster than a two
address machine because all data processing operations are applied to registers that have a far faster access
time than memory.

What is the difference between a computer’s architecture and its organization?

SOLUTION

A computer’s architecture is an abstraction; that is, it is the assembly language programmer’s view of the

computer in terms of its instruction set. A knowledge of a computer’s architecture is necessary to write
(machine-level) programs that run on the computer.

5

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

13.

14.

15.

16.

A computer’s organization is the actual organization or structure of the hardware that implements the
architecture. Any given architecture can be implemented by many different computer organizations. A
computer’s organization determines its price-to-performance ratio. In short, architecture tells us what a
computer does and organization tells us how it does it. Today, the term microarchitecture is sometimes used in
place of organization.

Can you think of other systems besides computers that may be said to have both an architecture and an
organization?

SOLUTION

The clock or watch falls into this category. Its architecture is determined by its dial and functions (date,
stopwatch etc.). Its organization determines how it calculates the time; for example, mechanical clockwork,
analog electronics driving a stepper motor to move the hands, or digital electronics.

Automobiles are another example: some automobiles have identical functionalities. However their organization
(gasoline or diesel, turbocharged or normally aspirated engine) determines their size, speed, and price.

What is the difference between an exo- and an endo-architecture?

SOLUTION

Dasgupta popularized the terms exo-architecture and endo-architecture. The exo-architecture of a computer is
the external view (or black box view) of its architecture. The endo-architecture is a description of a computer’s
architecture at the level of its implementation. For example, the exo-architecture refers to the add instruction
and the endo-architecture refers to what an adder does. These two terms correspond to ‘architecture’ and
‘organization’ as used in this text.

Over the years, has more computer progress been made in computer architecture or computer organization?
SOLUTION

It is difficult to precisely quantify progress in these two aspects of the computer. The question should be
interpreted to mean greater relative progress. It appears to me that greater progress has been made in the area
of organization rather than in architecture. For example, the programmer’s model of Intel’s IA32 architecture
has not changed greatly since the 80386. However, the performance of this family has changed massively in the
same period. Much of this performance is due to technological advances in manufacturing, and in organization
(e.g., the use of on-chip cache memory, pipelining, branch predication, parallel processing, and so on).

What is the semantic gap and what is its importance in computer architecture? You will need to use the
Internet or library to answer this question.

SOLUTION

Humans write code in high-level languages like C and Java. Computers execute code in low-level languages like
the Intel IA32 instruction set. The compiler translates a high-level language into low-level language (in machine
code form) that can run on an actual processor. The difference between high- and low-level languages is called
the semantic gap. If a computer were constructed that directly executed C code, then there would be no
semantic gap.

6

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

17.

18.

19.

20.

What is the difference between human memory and computer memory?
SOLUTION

A computer’s random access memory is normally accessed by applying an address to interrogate the contents
of a specific location within the memory. Human memory appears to be associative. That is, it is searched by
providing data as a key rather than address. Memory cells containing that key then respond. For example, the

” o« ”nou

key might be “red” and responses might be “sunset”, “color”, “rainbow”, and so on.

Associative memory is accessed in parallel with a key that is fed to all locations simultaneously. In other words,
you access associative memory rather like a web search, by means of a query. Currently, we cannot construct
large semiconductor associative memories, because it would mean accessing millions of locations
simultaneously and matching the contents of each location with the key. Associative memory is also called CAM
(content accessible memory). Small amounts of associative memory are used in specialized applications such as
high-speed address translation in memory management units.

What is the von Neumann bottleneck?
SOLUTION

The von Neumann machine operates in a fetch/execute cycle with a common memory holding both instructions
and data. This means that memory must be accessed (typically) twice for each instruction — once to read the
instruction and once to access the operand used by that instruction. Consequently, the path between the
computer and memory becomes a bottleneck. The use of separate data and instruction caches can help
overcome some effects of the bottleneck.

Suppose Intel did not develop the first microprocessor. Was the microprocessor inevitable?

In my view yes. At the time microprocessors appeared, everything that was needed was in place:
microtechnology and semiconductor manufacturing were growing, the computer and minicomputer existed,
calculators existed. Small and medium-scale logic elements were being produced. There was a need for the
microprocessor. All these factors made the microprocessor inevitable.

SOLUTION

Identify as many enabling technologies as you can that were required before the computer could be
constructed.

SOLUTION

In order to design a mechanical computer of the type envisaged by Babbage, you need chemistry and
metallurgy to create the working parts (moving cog wheels and levers and linkages), and engineering
technology to create the machines required to build the computer.

For an analog computer you need the development of the theory of electronics, the construction of active
(amplifying) devices such as vacuum tubes and transistors, and the availability of components such are
resistors, capacitors, inductors, diodes, etc., that are the basic elements of all analog circuits.

For the construction of electromechanical computers (i.e., those using relays) you need some of the same
components as general analog circuits plus relays that require the construction techniques of the watch-maker
(a relay has moving marts actuated by electromagnets).

For the construction of the electronic digital computer, you need the development of active devices (vacuum
tubes or transistors) that can be used to make gates and bistable elements (flip-flops). Of course, to construct
practical computers, you need to develop a wide range of technologies: electronics to process signals and

7

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

21.

22.

transmit data from point-to-point over both short and long distances. You need the development of magnetic
and optical technologies as these form the basis of many storage systems. You need the development of display
technologies (the CRT, LCD, printer, and so on). Note that many of the technologies are ‘universal’ in the sense
that using a technology in one field means that it can be applied in other areas; for example, the technology
used to build a CPU is almost identical to that used to create an LCD display.

| asked this question because some introductory texts on computer architecture and organization seem to
imply that the computer suddenly emerged. The typical discussion of computers goes something like ...abacus...
Babbage analytical engine ... ENIAC... PC.

In fact, rather a lot happened between Babbage and ENIAC. Much of the driving force behind the computer was
the result of the development of the telegraph and telephone networks. These required the development of
metallurgy (metals and wires, magnetics), chemical processing (insulators for wires), fabrication and
manufacturing, battery technology, and the development of circuit theory and transmission lines (the behavior
of signals in networks).

The design of mechanical and electromechanical switching networks for telephone exchanges gave rise to the
body of theory that would later be used to create binary and logic circuits. The vacuum tubes that were used as
amplifiers in switching circuits and memories required the development of complex chemistry (cathodes), high-
vacuum technology, and a theory of the behavior of electrons in electrostatic fields. Even cosmology played a
role in the history of the computer because circuits developed to detect cosmic rays in high-altitude balloons
were later adapted as pulse counters in the first generation of vacuum-tube-based computers. The
development of the computer required a massive amount of progress across numerous fronts.

Suppose Babbage had succeeded in creating a general-purpose mechanical computer that could operate at,
say, one operation per second. What effect, if any, do you think it might have had on Babbage's Victorian
society?

SOLUTION

Technology is often interlinked. A development in one area is made because there is a need for that
development. Technology often develops across a broad front (chemistry, materials science, engineering,
electronics and so on). Had Victorian society developed mechanical computers (of the form envisaged by
Babbage), engineering and scientific calculations may have been improved, but | doubt whether there would
have been a major impact on society. It was the development of the chemical industries and the beginning of
electronics that led to our modern society.

Use the method of finite differences to calculate the value of 15>

N N Al A2

1 1

2 4 3

3 9 5 2

4 16 7 2

5 25 9 2
SOLUTION

In the above table we’ve provided the integers 1 to 5 and their squares. The Al column contains the differences
between successive squares and the A2 column contains the difference between successive differences (this is
called the second difference). You can see that the second difference is always 2. Using this and addition we can
build up the following table. Below is the table from 4 onward with the seconds and first differences. We can
add the second differences to the N” column to complete the table.

8

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

23.

24,

N N? Al A2
4 16 7 2
5 25 9 2
6 36 11 2
7 49 13 2
8 64 15 2
9 81 17 2
10 100 19 2
11 121 21 2
12 144 23 2
13 169 25 2
14 196 27 2
15 225 29 2

Extend the method of finite differences to calculate the value of 8 and 9°.

SOLUTION
N N? Al A2 A3
1 1
2 8 7
3 27 19 12
4 64 37 18 6
5 125 61 24 6
6 216 91 30 6
7 343 127 36 6
8 512 169 42 6
9 729 217 48 6

In this case we’ve written the values of the cubes up to 5. Observe that the third difference is a constant 6. Now
the table can be continued by constructing the third, second, and first difference columns to generate the
column of cubes without multiplication.

Suppose you decided to try and make computers more ‘human’ and introduce the ‘random element.” How
would you do that?

SOLUTION

It is possible to make computers random in the sense that we can create random numbers and then use a
random number as a means of choosing the outcome of a decision; that is, creating a random element. Random
numbers can be generated by taking random noise and converting it into 1s and Os (random noise is the
background hiss present on some radio signals). Random numbers can also be created mathematically by
starting with a seed (an initial number) and then applying successive mathematical operations to create a
sequence of numbers that appear to be random. These are called pseudo-random numbers because the same
seed always generates the same sequence.

It would be possible to model some aspects of human thought processes by using random numbers to ‘make a
guess’; for example, to model a decision that is 90% certain you could create a random number in the range 0.0
to 1.0 and then take the decision if the random number is less than 0.9. This speculation belongs to the world of
artificial intelligence.

9

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

25.

26.

27.

Computers always follow blind logic. Executing the same program always gives the same results. That’s what
the computer books say. But is it true? My computer can appear to behave differently on different occasions.
Why do you think that this might be so?

SOLUTION

In principle, you would think that computers are entirely predictable and you always get the same response to
the same actions. In practice, clicking on an icon may sometimes work and sometimes cause a crash. Why?

Of course, it is true that basic computer operations always yield the same results using the same data; for
example, if you perform the operation a = f(b,c) you will always get the same value of a for data b and ¢ and
operation f.

However, computers are complex systems and are not entirely synchronous; for example, the state of a signal
from an external device may be sampled (read) and it may be read as a 1 or 0, depending at which instant it is
sampled. In a sophisticated system with memory management, data may sometimes be in memory and
sometimes on disk. If data is read from cache it may be available in 1 clock cycle, getting it from main store may
take 50 cycles before it is available. If the data is on disk, it may take more than 20 million clock cycles to
retrieve it. Whether data is immediately available or requires a very significant wait is dependent on the current
job load. The interaction between individual jobs, asynchronous events such as interrupts and data
transmission, means that it is difficult to predict the operation of a computer in many circumstances.

Note that, under certain circumstances, the sampling of digital signals can lead to transitory, random errors
called glitches.

The study of systems that require guaranteed behavior (industrial process controls, fly-by-wire aircraft, and
nuclear reactors) is a branch of computing called real-time systems. In real-time systems the hardware and
software are constructed to take account of the effect of the problems we have highlighted and to minimize
them. In the 1980s a processor called the Viper was designed in the UK (sponsored by the UK Ministry of
Defence) for applications that required predictability.

The value of X is 7. Some computer languages (or notations) interpret X+1 as 8 and others interpret it as Y.
Why?

SOLUTION

In everyday life (i.e., natural language), we do not distinguish between the name of a variable, its address, and
its value. When we say, X = X + 1, we mean that the value we have given the variable X is incremented by 1 to
become 8. X is the name of the variable whose value is 7.

If we regard X as the representation of the character X, then X is 0x58 (the ASCII code for X). Adding 1 to X gives
us 0x59 which is the ASCII code for Y.

Some computer languages allow you to operate on the name of a variable. This question demonstrates that it is
important to appreciate the difference between name, address, and value.

Carry out the necessary research and write an essay on the history of the development of computer memory
systems (e.g., CRT memory, delay-line stores, ferrite core stores, etc.)

SOLUTION

This is an open-ended question. Some professors might require a short note highlighting the details and others
may require an extended essay covering memory technologies and the biographies of those involved.
Historically, the first form of computer memory was the punched card. This was used in the Jacquard loom in
1801 to control the weaving of patterns in textiles —a hole or no hole at a point in a card could be used to cause

10

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

the horizontal thread to go in front of or behind the vertical threads. Babbage proposed the punched card as a
storage mechanism in his analytical engine.

Early EDVAC and ACE computers used mercury delay lines to store data. Information was converted into pulses
in columns of mercury and the pulses were continually recirculated. Mercury delay lines are impractical
because you have to wait for the data you want to reach the end of the tube where it is read and recirculated.

One of the very first random access fully electronic storage devices was the Williams tube that stored data as an
electrostatic charge on the surface of a cathode ray tube. These had small storage capacities but they made
possible some of the first computers at the end of the 1940s and the beginning of the 1950s.

Drum memories appeared in the late 1940s. These used a drum or cylinder as a magnetic recording device; that
is, it was rather like a 3-dimensional hard disk (instead of coating a flat platter with a magnetic material, the
surface of a rotating drum was coated with a magnetic material). Data was written along tracks and the disk
rotated. This was also a non-random access device, but it could store more data than previous technologies.

Jay Foster investigated the properties of ferromagnetic materials at MIT in 1949 and this work led to the
development of the ferrite core memory used by the Whirlwind | computer in 1953. The ferrite core stored
binary data as clockwise or anticlockwise magnetization in a tiny ferrite bead. This allowed random access and
relatively high speeds (e.g., 1 us). Ferrite core memory dominated computing for three decades.

Today’s mainstream semiconductor memory is constructed with DRAM, dynamic memory that stores data as an
electrostatic charge in a transistor. DRAM was first commercially produced by Intel in 1970. It is still the
dominant form of main store in computers today.

Secondary storage has been implemented as paper tape (obsolete) magnetic tape (still going strong in its
modern forms), and disk drives. Magnetic tape recording was invented in Germany in 1928. The first use of tape
to record data was in 1951 on the UNIVACI.

The disk drive uses a flat rotating platter with data recorded in concentric tracks on a magnetized surface. It is
the same as tape in principle. The first disk drive was introduced by IBM in 1956 in their RAMAC computer. The
first relatively low-cost hard disk drive appeared in 1973 as the IBM 3340 Winchester drive. Today, the hard disk
drive has evolved into small, low-cost systems with capacities of the order of 3 TB.

The hard-disk drive is contrasted with the floppy-disk drive. The floppy disk drive (now virtually obsolete) used
low-cost plastic disks to store data in the early days of the PC revolution (e.g., capacities of 360 KB, 720 KB, 1.4
MB and 2.88 MB). These capacities are miniscule today and the flash drive has totally replaced the floppy disk
drive. Although the PC revolution owes everything to the floppy magnetic disk, this recording medium is now
almost entirely forgotten.

Of all the early computers, which do you think should be called the first computer if you are judging the world
by today’s standards?

SOLUTION

This question is difficult, if not impossible, to answer. The person closely associated with an invention in the
public’s mind is not necessarily the person who really made the invention. For example, Edison didn’t invent the
incandescent light. Similarly, many now believe that Bell didn’t invent the telephone. In 2002 the US Congress
recognized the Italian-American Antonio Meucci as the true inventor of the telephone. It is said that Meucci
demonstrated the telephone in New York in 1860, sixteen years before Bell took out a patent. | was surprised to
find that the transistor was not invented at Bell labs in 1947. Julius Lilienfeld filed a patent for the transistor in
1925.

Claims to the development of the computer are as convoluted and controversial as claims to any other
invention. Claims are often influenced by national chauvinism or economic pressures (e.g., in the UK many

11

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

believe that John Logie Baird invented television, even though very few people in the USA have heard of Baird).
The invention of television is analogous to the invention of the computer. Baird demonstrated a means of
displaying moving images at a distance. However, the quality of the image and the resolution were very poor,
because his scanning process was entirely mechanical. A year or so later, Vladimir Zworkin demonstrated
moving images using the iconoscope, an electronic device that became the basis of modern television. Baird’s
invention was a dead end. So, does Baird or Zworkin deserve the credit?

In the world of computing we have a similar problem. When did the computer emerge? If you regard a
computer as a concept, Babbage deserves the credit because he suggested the storage of instructions in
memory, a mill or processor that performed operations, a means of storing intermediate results, and a
mechanism for conditional computation. Babbage never built his mechanical system. However, we should note
that today we often view Babbage’s analytical engine through modern eyes as if it were conceived of as a
computer (Babbage certainly did not see it that way).

Konrad Zuse is now given credit as one of the inventors of the computer. He designed an electro-mechanical
computer and even had a binary -floating point unit in 1936. Because he was in Germany in WW2, the outside
world learned little of his work until historians re-evaluated his contribution. Zuse’s Z1 computer (1938) was the
first program-controlled computer and his Z3 (1941) was the world’s first fully functional programmable
computer.

Atanasoff and Berry claim to have invented the first digital computer in 1937. This was an electronic computer,
but not a stored program computer. It was a calculating engine designed to solve linear equations and was not
a computer in the current sense of the word (electronic calculator would have been a better term). Many
regard the ENIAC as the first digital computer. This was also an electronic machine built at the University of
Pennsylvania and completed in 1964. The ENIAC was not programmable and you created a program by
rearranging the hardware.

However, in 1973 ENIAC’s patent of 1963 was ruled invalid in favor of Atanasoff-Berry. Basically, two giants of
computing, Sperry Rand and Honeywell, sued each other because Honeywell alleged that Sperry Rand had an
illegal monopoly as Sperry Rand held the ENIAC patent and Honeywell was championing Atanasoff. Atanasoff
won the case. However, many historians feel that the judgment was flawed; not least because the ABC
(Atanasoff-Berry Computer) computer was not programmable.

It appears that the first true stored-program computer (if we forget Zuse) was the so-called Manchester Baby
built at the University of Manchester in the UK in 1948. The EDSAC at Cambridge University, also in the UK, was
completed in 1949 and is also frequently credited with being the first stored-program computer.

The computer (as we know it) resulted from gradually accelerating developments during the 1930s and 40s. Its
development was inevitable given the need for high-speed computation, the widespread notion of an electronic
brain and the availability of technology.

In what applications have computers been most successful and in what applications have they been least
successful or even useless?

SOLUTION

Computers are ubiquitous today in both control systems, and human systems. The microprocessor has brought
low-cost controllability to almost any system, from the washing machine to the automobile. Microprocessors
are at the heart of digital cameras, mobile phones, MP3 players, iPads/tablets and GPS systems.

Probably the first really successful popular use of the computer was word processing. It allowed countless
millions to create and manipulate documents at home. With the growth of communications technology, the
microprocessor gave us the web and distributed information — not to mention computer games and
multimedia. All these are successes. One of the most surprising and unanticipated products of the
microprocessor revolution was the spreadsheet. That revolutionized commerce.

12

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

30.

31.

Computers have probably been least successful in the field of artificial intelligence; that is, the mimicking of
human behavior. Certainly, the humanoid robot (e.g., Asimov’s robots) that has a very long history in SF has not
emerged. Nothing remotely like it has appeared. Operations that are apparently simple to humans, such as
speech understanding, have not been fully achieved (there are, of course, some respectable speech recognition
and understanding systems such as Apple’s Siri, but these are not yet perfect). Similarly, robots cannot
generally perform operations that we regard as easily; for example, climbing stairs. We have created excellent
special-purpose robots (e.g., in the automobile world) but nothing that comes close to a machine with human-
like capabilities.

Why is the bus so important to a computer?
SOLUTION

The bus distributes data in a computer between functional units and between the computer and peripherals.
The bus provides a computer with connectivity. The bus is to a computer what a highway is to a human.
Without highways we would not be able to go from one place to another with great ease. Every journey would
have to be strictly point-to-point. We share roads with others and have protocols (traffic signals, driving
conventions, and laws) to ensure the smooth and orderly flow of traffic. The same is true of computers and
buses. Processors, memory units, displays and countless peripherals have to be interconnected. Buses allow
this to take place. There are fast buses between a computer (CPU) and its external memory (DRAM). There are
slower buses between computers and peripherals (e.g., USB). Protocols exist so that information flows in an
orderly fashion in a computer; for example, one device can request the bus, another device currently
controlling the bus can give it up, and the would-be bus controller take control in an orderly fashion.

It is common to hear the argument that the development of the CPU (microprocessor) in terms of its size,
power, and speed has driven the computer revolution. What other aspects of the computer system have driven
the computer revolution?

SOLUTION

The previous question pointed out the importance of the bus. Without USB/FireWire and WiFi/Bluetooth,
interconnectivity would not be possible and mobile Internet applications would not exist. Similarly, the
development of low-cost peripherals such as printers, scanners, displays, mice and keyboards has made the
personal computer an almost essential household item.

Three other developments that have been vital to the growth of the computer are:

a. The display. Portable computing would be impossible without low-cost, high-resolution, energy-efficient
color displays.

b. The development of the disk drive provides large quantities of low-cost data storage. Although
performance has increased relatively little (time to read and write data), storage capacity has risen from
about 5 MB to about 5 TB which represents a million-fold increase in capacity.

c. The development of flash-memory. The hard disk is relatively bulky and has high power consumption. Flash

memory now provides the non-volatile storage required by MP3 players, digital cameras, and some
notebook/netbook computers.

13

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

32.

33.

Where do you think the bottlenecks (limitations or barriers) to the growth of the computer, in terms of its
computational power and its abilities/application, lie?

SOLUTION
This is partially answered by other questions on, for example, Moore’s Law.

Limitations depend to some extent on the nature of the user. This answer is largely aimed at the home or office
computer user, rather than the scientific or government user, because scientific/government users can spend
their way out of bottlenecks (e.g., by means of massive parallelism).

In terms of data storage (capacity) we are doing well. The greatest storage requirement comes from high
definition moving images. At the moment personal computers and tablets can hold a reasonable amount of
data; for example, hundreds of hours of video. As the resolution of displays increases, there will be a continued
need for more storage capacity (and some will wish to carry their entire video storage with them).

Processing power is not usually an issue in desktop computing. However, those working on very high resolution
still and moving images continue to require more power. The same is true for high-resolution dynamic games.
High-performance games computing will probably be a driving force for years to come.

Al applications will continue to soak up computing power as fast as it can be generated for the foreseeable
future. For example, face recognition could be used to compile databases of all scenes and actions across many
movies, a gigantic task.

A practical limitation to computing is bandwidth, either for a fixed computer (e.g., via cable modems) or for
mobile computers (via WiFi). It may well be that the lack of bandwidth will prove to be the single most limiting
factor for the average user.

Another limitation is power. This manifests itself by limiting computing speed (the need for more energy) and
displays (the need to provide backlighting). Another power limitation is dissipation in terms of the need to
remove heat from a computer. This is a particular problem in mobile computing. Finally, when the public
electricity supply is not available (e.g., mobile computing), the principal limitation is battery life.

In non-home and office computing (commercial, military, government, medical) it is hard to see any limit to the
demand for both storage capacity and computing power. Medical imaging alone has increasingly larger and
larger storage requirements. Simulation also has endless requirements from the simulation of nuclear
explosions, to the simulation of weather systems, to the simulation of molecular processes in physics. There is
simply no foreseeable limit to computational requirements.

Is Moore’s law a law?
SOLUTION

No, not in the sense of a physical law. It is based on an observation that has been turned into a prophecy or
conjecture. Because it has appeared to hold (or at least approximately so) for four decades, manufacturers have
used Moore’s Law to begin designing the next generation of microprocessors before the current generation is in
production; that is, the manufacturer can start to design a system with twice the number of transistors as the
current generation without the technology needed to fabricate the device being currently available. | call it
‘Mr. Micawber’s Law’, because it relies on something turning up. In recent years, many have stated that
Moore’s Law has indeed come to an end because we have reached (or are very close to) the physical limits to
computer performance.

14

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

34.

Why do you think that Moore’s law exists? What drives it or makes it possible?
SOLUTION

There are several versions of Moore’s Law and corollaries of it. The basic law states that the number of
transistors on a chip doubles every 18 months. This is similar to saying that the size of individual transistors will
be reduced by a factor of 0.7 every 18 months. A popular corollary is that processing power double every 18
months. The fact that Moore’s Law has worked for so long indicates that there may be several factors driving it.

Moore’s Law has been kept afloat by the astonishing progress in semiconductor manufacturing technologies
that are able to fabricate smaller and smaller transistors, year by year. In turn, this requires progress in many
different areas — semiconductor manufacture, encapsulation, the development of new materials such as the
high-k metal gate, new transistor structures (different geometry) and, above all, progress in the
photolithography used to fabricate chips. Moreover, as technologies improve they can themselves be used to
create better chip-manufacturing tools.

Moore’s Law will eventually come to an end. That is not an observation from recent trends or a guess or a
conjecture; it’s a certainty. Semiconductors are constructed from real materials that have an atomic structure.
There is a limit to how small things can be made in the atomic world. By about 2020, transistors will be reaching
the atomic limit. Once interconnections between transistors chips become just a few atoms wide, the
conventional rules of electronics will no longer hold and quantum mechanical effects will begin to dominate.

Some believe that Moore’s Law will continue beyond 2020 by exploiting three-dimensional circuit design, or
other forms of computing that take place at the atomic level using quantum mechanical effects or magnetism.

15

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available website, in whole or in part.

