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Chapter One

1. AC{D,B} = ACDB +ACBD, A{C,B}D = ACBD +ABCD, C{D,A}B = CDAB +
CADB, and {C,A}DB = CADB+ACDB. Therefore−AC{D,B}+A{C,B}D−C{D,A}B+
{C,A}DB = −ACDB + ABCD − CDAB + ACDB = ABCD − CDAB = [AB,CD]

In preparing this solution manual, I have realized that problems 2 and 3 in are misplaced
in this chapter. They belong in Chapter Three. The Pauli matrices are not even defined in
Chapter One, nor is the math used in previous solution manual. – Jim Napolitano

2. (a) Tr(X) = a0Tr(1) +
�

�
Tr(σ�)a� = 2a0 since Tr(σ�) = 0. Also

Tr(σkX) = a0Tr(σk) +
�

�
Tr(σkσ�)a� =

1

2

�
�
Tr(σkσ� + σ�σk)a� =

�
�
δk�Tr(1)a� = 2ak. So,

a0 = 1

2
Tr(X) and ak = 1

2
Tr(σkX). (b) Just do the algebra to find a0 = (X11 + X22)/2,

a1 = (X12 +X21)/2, a2 = i(−X21 +X12)/2, and a3 = (X11 −X22)/2.

3. Since det(σ · a) = −a2
z
− (a2

x
+ a2

y
) = −|a|2, the cognoscenti realize that this problem

really has to do with rotation operators. From this result, and (3.2.44), we write

det

�
exp

�
±
iσ · n̂φ

2

��
= cos

�
φ

2

�
± i sin

�
φ

2

�

and multiplying out determinants makes it clear that det(σ · a�) = det(σ · a). Similarly, use
(3.2.44) to explicitly write out the matrix σ · a� and equate the elements to those of σ · a.
With n̂ in the z-direction, it is clear that we have just performed a rotation (of the spin
vector) through the angle φ.

4. (a) Tr(XY ) ≡
�

a
�a|XY |a� =

�
a

�
b
�a|X|b��b|Y |a� by inserting the identity operator.

Then commute and reverse, so Tr(XY ) =
�

b

�
a
�b|Y |a��a|X|b� =

�
b
�b|Y X|b� = Tr(Y X).

(b) XY |α� = X[Y |α�] is dual to �α|(XY )†, but Y |α� ≡ |β� is dual to �α|Y † ≡ �β| and X|β�
is dual to �β|X† so that X[Y |α�] is dual to �α|Y †X†. Therefore (XY )† = Y †X†.
(c) exp[if(A)] =

�
a
exp[if(A)]|a��a| =

�
a
exp[if(a)]|a��a|

(d)
�

a
ψ∗
a
(x�)ψa(x��) =

�
a
�x�|a�∗�x��|a� =

�
a
�x��|a��a|x�� = �x��|x�� = δ(x�� − x

�)

5. For basis kets |ai�, matrix elements of X ≡ |α��β| are Xij = �ai|α��β|aj� = �ai|α��aj|β�∗.
For spin-1/2 in the | ± z� basis, �+|Sz = h̄/2� = 1, �−|Sz = h̄/2� = 0, and, using (1.4.17a),
�±|Sx = h̄/2� = 1/

√
2. Therefore

|Sz = h̄/2��Sx = h̄/2|
.
=

1
√
2

�
1 1
0 0

�

6. A[|i�+ |j�] = ai|i�+aj|j� �= [|i�+ |j�] so in general it is not an eigenvector, unless ai = aj.
That is, |i�+ |j� is not an eigenvector of A unless the eigenvalues are degenerate.
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7. Since the product is over a complete set, the operator
�

a�(A− a�) will always encounter
a state |ai� such that a� = ai in which case the result is zero. Hence for any state |α�

�

a�

(A− a�)|α� =
�

a�

(A− a�)
�

i

|ai��ai|α� =
�

i

�

a�

(ai − a�)|ai��ai|α� =
�

i

0 = 0

If the product instead is over all a� �= aj then the only surviving term in the sum is
�

a�

(aj − a�)|ai��ai|α�

and dividing by the factors (aj −a�) just gives the projection of |α� on the direction |a��. For
the operator A ≡ Sz and {|a��} ≡ {|+�, |−�}, we have

�

a�

(A− a�) =

�
Sz −

h̄

2

��
Sz +

h̄

2

�

and
�

a� �=a��

A− a�

a�� − a�
=

Sz + h̄/2

h̄
for a�� = +

h̄

2

or =
Sz − h̄/2

−h̄
for a�� = −

h̄

2

It is trivial to see that the first operator is the null operator. For the second and third, you
can work these out explicitly using (1.3.35) and (1.3.36), for example

Sz + h̄/2

h̄
=

1

h̄

�
Sz +

h̄

2
1

�
=

1

2
[(|+��+|)− (|−��−|) + (|+��+|) + (|−��−|)] = |+��+|

which is just the projection operator for the state |+�.

8. I don’t see any way to do this problem other than by brute force, and neither did the
previous solutions manual. So, make use of �+|+� = 1 = �−|−� and�+|−� = 0 = �−|+� and
carry through six independent calculations of [Si, Sj] (along with [Si, Sj] = −[Sj, Si]) and
the six for {Si, Sj} (along with {Si, Sj} = +{Sj, Si}).

9. From the figure n̂ = î cosα sin β + ĵ sinα sin β + k̂ cos β so we need to find the matrix
representation of the operator S · n̂ = Sx cosα sin β+Sy sinα sin β+Sz cos β. This means we
need the matrix representations of Sx, Sy, and Sz. Get these from the prescription (1.3.19)
and the operators represented as outer products in (1.4.18) and (1.3.36), along with the
association (1.3.39a) to define which element is which. Thus

Sx

.
=

h̄

2

�
0 1
1 0

�
Sy

.
=

h̄

2

�
0 −i
i 0

�
Sz

.
=

h̄

2

�
1 0
0 −1

�

We therefore need to find the (normalized) eigenvector for the matrix
�

cos β cosα sin β − i sinα sin β
cosα sin β + i sinα sin β − cos β

�
=

�
cos β e−iα sin β

eiα sin β − cos β

�



Copyright, Pearson Education. 4

with eigenvalue +1. If the upper and lower elements of the eigenvector are a and b, respec-
tively, then we have the equations |a|2 + |b|2 = 1 and

a cos β + be−iα sin β = a

aeiα sin β − b cos β = b

Choose the phase so that a is real and positive. Work with the first equation. (The two
equations should be equivalent, since we picked a valid eigenvalue. You should check.) Then

a2(1− cos β)2 = |b|2 sin2 β = (1− a2) sin2 β

4a2 sin4(β/2) = (1− a2)4 sin2(β/2) cos2(β/2)

a2[sin2(β/2) + cos2(β/2)] = cos2(β/2)

a = cos(β/2)

and so b = aeiα
1− cos β

sin β
= cos(β/2)eiα

2 sin2(β/2)

2 sin(β/2) cos(β/2)

= eiα sin(β/2)

which agrees with the answer given in the problem.

10. Use simple matrix techniques for this problem. The matrix representation for H is

H
.
=

�
a a
a −a

�

Eigenvalues E satisfy (a−E)(−a−E)− a2 = −2a2 +E2 = 0 or E = ±a
√
2. Let x1 and x2

be the two elements of the eigenvector. For E = +a
√
2 ≡ E(1), (1−

√
2)x(1)

1
+ x(1)

2
= 0, and

for E = −a
√
2 ≡ E(2), (1 +

√
2)x(2)

1
+ x(2)

2
= 0. So the eigenstates are represented by

|E(1)
�
.
= N (1)

�
1

√
2− 1

�
and |E(2)

�
.
= N (2)

�
−1

√
2 + 1

�

where N (1)2 = 1/(4− 2
√
2) and N (2)2 = 1/(4 + 2

√
2).

11. It is of course possible to solve this using simple matrix techniques. For example, the
characteristic equation and eigenvalues are

0 = (H11 − λ)(H22 − λ)−H2

12

λ =
H11 +H22

2
±

��
H11 −H22

2

�2

+H2

12

�1/2

≡ λ±

You can go ahead and solve for the eigenvectors, but it is tedious and messy. However, there
is a strong hint given that you can make use of spin algebra to solve this problem, another
two-state system. The Hamiltonian can be rewritten as

H
.
= A1+Bσz + Cσx
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where A ≡ (H11 + H22)/2, B ≡ (H11 − H22)/2, and C ≡ H12. The eigenvalues of the first
term are both A, and the eigenvalues for the sum of the second and third terms are those
of ±(2/h̄) times a spin vector multiplied by

√
B2 + C2. In other words, the eigenvalues of

the full Hamiltonian are just A±
√
B2 + C2 in full agreement with what we got with usual

matrix techniques, above. From the hint (or Problem 9) the eigenvectors must be

|λ+� = cos
β

2
|1�+ sin

β

2
|2� and |λ−� = − sin

β

2
|1�+ cos

β

2
|2�

where α = 0, tan β = C/B = 2H12/(H11 −H22), and we do β → π − β to “flip the spin.”

12. Using the result of Problem 9, the probability of measuring +h̄/2 is

����

�
1
√
2
�+|+

1
√
2
�−|

� �
cos

γ

2
|+�+ sin

γ

2
|−�

�����
2

=
1

2

��
1 + cos γ

2
+

�
1− cos γ

2

�2

=
1 + sin γ

2

The results for γ = 0 (i.e. |+�), γ = π/2 (i.e. |Sx+�), and γ = π (i.e. |−�) are 1/2, 1, and
1/2, as expected. Now �(Sx − �Sx�)2� = �S2

x
� − �Sx�

2, but S2

x
= h̄2/4 from Problem 8 and

�Sx� =
�
cos

γ

2
�+|+ sin

γ

2
�−|

� h̄
2
[|+��−|+ |−��+|]

�
cos

γ

2
|+�+ sin

γ

2
|−�

�

=
h̄

2

�
cos

γ

2
�−|+ sin

γ

2
�+|

� �
cos

γ

2
|+�+ sin

γ

2
|−�

�
= h̄ cos

γ

2
sin

γ

2
=

h̄

2
sin γ

so �(Sx − �Sx�)2� = h̄2(1− sin2 γ)/4 = h̄2 cos2 γ/4 = h̄2/4, 0, h̄24 for γ = 0, π/2, π.

13. All atoms are in the state |+� after emerging from the first apparatus. The second
apparatus projects out the state |Sn+�. That is, it acts as the projection operator

|Sn+��Sn + | =

�
cos

β

2
|+�+ sin

β

2
|−�

� �
cos

β

2
�+|+ sin

β

2
�−|

�

and the third apparatus projects out |−�. Therefore, the probability of measuring −h̄/2
after the third apparatus is

P (β) = |�+|Sn+��Sn + |−�|
2 = cos2

β

2
sin2

β

2
=

1

4
sin2 β

The maximum transmission is for β = 90◦, when 25% of the atoms make it through.

14. The characteristic equation is −λ3 − 2(−λ)(1/
√
2)2 = λ(1− λ2) = 0 so the eigenvalues

are λ = 0,±1 and there is no degeneracy. The eigenvectors corresponding to these are

1
√
2




−1
0
1



 1

2




1

√
2
1



 1

2




1

−
√
2
1





The matrix algebra is not hard, but I did this with matlab using
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M=[[0 1 0];[1 0 1];[0 1 0]]/sqrt(2)

[V,D]=eig(M)

These are the eigenvectors corresponding to the a spin-one system, for a measurement in
the x-direction in terms of a basis defined in the z-direction. I’m not sure if there is enough
information in Chapter One, though, in order to deduce this.

15. The answer is yes. The identity operator is 1 =
�

a�,b� |a
�, b���a�, b�| so

AB = AB1 = AB
�

a�,b�

|a�, b���a�, b�| = A
�

a�,b�

b�|a�, b���a�, b�| =
�

a�,b�

b�a�|a�, b���a�, b�| = BA

Completeness is powerful. It is important to note that the sum must be over both a� and b�

in order to span the complete set of sets.

16. Since AB = −BA and AB|a, b� = ab|a, b� = BA|a, b�, we must have ab = −ba where
both a and b are real numbers. This can only be satisfied if a = 0 or b = 0 or both.

17. Assume there is no degeneracy and look for an inconsistency with our assumptions. If
|n� is a nondegenerate energy eigenstate with eigenvalue En, then it is the only state with this
energy. Since [H.A1] = 0, we must have HA1|n� = A1H|n� = EnA1|n�. That is, A1|n� is an
eigenstate of energy with eigenvalue En. Since H and A1 commute, though, they may have
simultaneous eigenstates. Therefore, A1|n� = a1|n� since there is only one energy eigenstate.

Similarly, A2|n� is also an eigenstate of energy with eigenvalue En, and A2|n� = a2|n�. But
A1A2|n� = a2A1|n� = a2a1|n� and A2A1|n� = a1a2|n�, where a1 and a2 are real numbers.
This cannot be true, in general, if A1A2 �= A2A1 so our assumption of “no degeneracy” must
be wrong. There is an out, though, if a1 = 0 or a2 = 0, since one operator acts on zero.

The example given is from a “central forces” Hamiltonian. (See Chapter Three.) The Hamil-
tonian commutes with the orbital angular momentum operators Lx and Ly, but [Lx, Ly] �= 0.
Therefore, in general, there is a degeneracy in these problems. The degeneracy is avoided,
though for S-states, where the quantum numbers of Lx and Ly are both necessarily zero.

18. The positivity postulate says that �γ|γ� ≥ 0, and we apply this to |γ� ≡ |α�+λ|β�. The
text shows how to apply this to prove the Schwarz Innequality �α|α��β|β� ≥ |�α|β�|2, from
which one derives the generalized uncertainty relation (1.4.53), namely

�(∆A)2(∆B)2� ≥
1

4
|�[A,B]�|2

Note that [∆A,∆B] = [A−�A�, B−�B�] = [A,B]. Taking ∆A|α� = λ∆B|α� with λ∗ = −λ,
as suggested, so �α|∆A = −λ�α|∆B, for a particular state |α�. Then

�α|[A,B]|α� = �α|∆A∆B −∆B∆A|α� = −2λ�α|(∆B)2|α�
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and the equality is clearly satisfied in (1.4.53). We are now asked to verify this relationship
for a state |α� that is a gaussian wave packet when expressed as a wave function �x�|α�. Use

�x�
|∆x|α� = �x�

|x|α� − �x��x�
|α� = (x�

− �x�)�x�
|α�

and �x�
|∆p|α� = �x�

|p|α� − �p��x�
|α� =

h̄

i

d

dx� �x
�
|α� − �p��x�

|α�

with �x�
|α� = (2πd2)−1/4 exp

�
i�p�x�

h̄
−

(x� − �x�)2

4d2

�

to get
h̄

i

d

dx� �x
�
|α� =

�
�p� −

h̄

i

1

2d2
(x�

− �x�)

�
�x�

|α�

and so �x�
|∆p|α� = i

h̄

2d2
(x�

− �x�)�x�
|α� = λ�x�

|∆x|α�

where λ is a purely imaginary number. The conjecture is satisfied.

It is very simple to show that this condition is satisfied for the ground state of the harmonic
oscillator. Refer to (2.3.24) and (2.3.25). Clearly �x� = 0 = �p� for any eigenstate |n�, and
x|0� is proportional to p|0�, with a proportionality constant that is purely imaginary.

19. Note the obvious typographical error, i.e. Sx

2
should be S2

x
. Have S2

x
= h̄2/4 = S2

y
=

S2

z
, also [Sx, Sy] = ih̄Sz, all from Problem 8. Now �Sx� = �Sy� = 0 for the |+� state.

Then �(∆Sx)2� = h̄2/4 = �(∆Sy)2�, and �(∆Sx)2�(∆Sy)2 = h̄4/16. Also |�[Sx, Sy]�|2/4 =
h̄2
|�Sz�|

2/4 = h̄4/16 and the generalized uncertainty principle is satisfied by the equality. On
the other hand, for the |Sx+� state, �(∆Sx)2� = 0 and �Sz� = 0, and again the generalized
uncertainty principle is satisfied with an equality.

20. Refer to Problems 8 and 9. Parameterize the state as |� = cos β

2
|+�+ eiα sin β

2
|−�, so

�Sx� =
h̄

2

�
cos

β

2
�+|+ e−iα sin

β

2
�−|

�
[|+��−|+ |−��+|]

�
cos

β

2
|+�+ eiα sin

β

2
|−�

�

=
h̄

2
sin

β

2
cos

β

2
(eiα + e−iα) =

h̄

2
sin β cosα

�(∆Sx)
2
� = �S2

x
� − �Sx�

2 =
h̄2

4
(1− sin2 β cos2 α) (see prob 12)

�Sy� = i
h̄

2

�
cos

β

2
�+|+ e−iα sin

β

2
�−|

�
[−|+��−|+ |−��+|]

�
cos

β

2
|+�+ eiα sin

β

2
|−�

�

= i
h̄

2
sin

β

2
cos

β

2
(eiα − e−iα) = −

h̄

2
sin β sinα

�(∆Sy)
2
� = �S2

y
� − �Sy�

2 =
h̄2

4
(1− sin2 β sin2 α)
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Therefore, the left side of the uncertainty relation is

�(∆Sx)
2
��(∆Sy)

2
� =

h̄4

16
(1− sin2 β cos2 α)(1− sin2 β sin2 α)

=
h̄4

16

�
1− sin2 β +

1

4
sin4 β sin2 2α

�

=
h̄4

16

�
cos2 β +

1

4
sin4 β sin2 2α

�
≡ P (α, β)

which is clearly maximized when sin 2α = ±1 for any value of β. In other words, the
uncertainty product is a maximum when the state is pointing in a direction that is 45◦ with
respect to the x or y axes in any quadrant, for any tilt angle β relative to the z-axis. This
makes sense. The maximum tilt angle is derived from

∂P

∂β
∝ −2 cos β sin β + sin3 β cos β(1) = cos β sin β(−2 + sin2 β) = 0

or sin β = ±1/
√
2, that is, 45◦ with respect to the z-axis. It all hangs together. The

maximum uncertainty product is

�(∆Sx)
2
��(∆Sy)

2
� =

h̄4

16

�
1

2
+

1

4

1

4

�
=

9

256
h̄4

The right side of the uncertainty relation is |�[Sx, Sy]�|2/4 = h̄2
|�Sz�|

2/4, so we also need

�Sz� =
h̄

2

�
cos2

β

2
− sin2

β

2

�
=

h̄

2
cos β

so the value of the right hand side at maximum is

h̄2

4
|�Sz�|

2 =
h̄2

4

h̄2

4

1

2
=

8

256
h̄4

and the uncertainty principle is indeed satisfied.

21. The wave function is �x|n� =
�
2/a sin(nπx/a) for n = 1, 2, 3, . . ., so we calculate

�x|x|n� =

�
a

0

�n|x�x�x|n�dx =
a

2

�x|x2
|n� =

�
a

0

�n|x�x2
�x|n�dx =

a2

6

�
−

3

n2π2
+ 2

�

(∆x)2 =
a2

6

�
−

3

n2π2
+ 2−

6

4

�
=

a2

6

�
−

3

n2π2
+

1

2

�

�x|p|n� =

�
a

0

�n|x�
h̄

i

d

dx
�x|n�dx = 0

�x|p2|n� = −h̄2

�
a

0

�n|x�
d2

dx2
�x|n�dx =

n2π2h̄2

a2
= (∆p)2
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(I did these with maple.) Since [x, p] = ih̄, we compare (∆x)2(∆p)2 to h̄2/4 with

(∆x)2(∆p)2 =
h̄2

6

�
−3 +

n2π2

2

�
=

h̄2

4

�
n2π2

3
− 2

�

which shows that the uncertainty principle is satisfied, since nπ2/3 > nπ > 3 for all n.

22. We’re looking for a “rough order of magnitude” estimate, so go crazy with the approx-
imations. Model the ice pick as a mass m and length L, standing vertically on the point,
i.e. and inverted pendulum. The angular acceleration is θ̈, the moment of inertia is mL2

and the torque is mgL sin θ where θ is the angle from the vertical. So mL2θ̈ = mgL sin θ or
θ̈ =

�
g/L sin θ. Since θ � 0 as the pick starts to fall, take sin θ = θ so

θ(t) = A exp

��
g

L
t

�
+B exp

�
−

�
g

L
t

�

x0 ≡ θ(0)L = (A+B)L

p0 ≡ mθ̇(0)L = m

�
g

L
(A− B)L =

�
m2gL(A− B)

Let the uncertainty principle relate x0 and p0, i.e. x0p0 =
�
m2gL3(A2 − B2) = h̄. Now

ignore B; the exponential decay will become irrelevant quickly. You can notice that the
pick is falling when it is tilting by something like 1◦ = π/180, so solve for a time T where
θ(T ) = π/180. Then

T =

�
L

g
ln

π/180

A
=

�
L

g

�
1

4
ln

m2gL3

h̄2
− ln

180

π

�

Take L = 10 cm, so
�

L/g ≈ 0.1 sec, but the action is in the logarithms. (It is worth your
time to confirm that the argument of the logarithm in the first term is indeed dimensionless.)
Now ln(180/π) ≈ 4 but the first term appears to be much larger. This is good, since it means
that quantum mechanics is driving the result. For m = 0.1 kg, find m2gL3/h̄2 = 1064, and
so T = 0.1 sec× (147/4− 4) ∼ 3 sec. I’d say that’s a surprising and interesting result.

23. The eigenvalues of A are obviously ±a, with −a twice. The characteristic equation for
B is (b− λ)(−λ)2 − (b− λ)(ib)(−ib) = (b− λ)(λ2 − b2) = 0, so its eigenvalues are ±b with b
twice. (Yes, B has degenerate eigenvalues.) It is easy enough to show that

AB =




ab 0 0
0 0 iab
0 −iab 0



 = BA

so A and B commute, and therefore must have simultaneous eigenvectors. To find these,
write the eigenvector components as ui, i = 1, 2, 3. Clearly, the basis states |1�, |2�, and |3�
are eigenvectors of A with eigenvalues a, −a, and −a respectively. So, do the math to find
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the eigenvectors for B in this basis. Presumably, some freedom will appear that allows us
to linear combinations that are also eigenvectors of A. One of these is obviously |1� ≡ |a, b�,
so just work with the reduced 2× 2 basis of states |2� and |3�. Indeed, both of these states
have eigenvalues a for A, so one linear combinations should have eigenvalue +b for B, and
orthogonal combination with eigenvalue −b.

Let the eigenvector components be u2 and u3. Then, for eigenvalue +b,

−ibu3 = +bu2 and ibu2 = +bu3

both of which imply u3 = iu2. For eigenvalue −b,

−ibu3 = −bu2 and ibu2 = −bu3

both of which imply u3 = −iu2. Choosing u2 to be real, then (“No, the eigenvalue alone
does not completely characterize the eigenket.”) we have the set of simultaneous eigenstates

Eigenvalue of
A B Eigenstate
a b |1�
−a b 1√

2
(|2�+ i|3�)

−a −b 1√
2
(|2� − i|3�)

24. This problem also appears to belong in Chapter Three. The Pauli matrices are not
defined in Chapter One, but perhaps one could simply define these matrices, here and in
Problems 2 and 3.
Operating on the spinor representation of |+� with (1

√
2)(1 + iσx) gives

1
√
2

��
1 0
0 1

�
+ i

�
0 1
1 0

���
1
0

�
=

1
√
2

�
1 i
i 1

��
1
0

�
=

1
√
2

�
1
i

�

So, for an operator U such that U
.
= (1

√
2)(1+ iσx), we observe that U |+� = |Sy; +�, defined

in (1.4.17b). Similarly operating on the spinor representation of |−� gives

1
√
2

��
1 0
0 1

�
+ i

�
0 1
1 0

���
0
1

�
=

1
√
2

�
1 i
i 1

��
0
1

�
=

1
√
2

�
i
1

�
=

i
√
2

�
1
−i

�

that is, U |−� = i|Sy;−�. This is what we would mean by a “rotation” about the x-axis by
90◦. The sense of the rotation is about the +x direction vector, so this would actually be
a rotation of −π/2. (See the diagram following Problem Nine.) The phase factor i = eiπ/2

does not affect this conclusions, and in fact leads to observable quantum mechanical effects.
(This is all discussed in Chapter Three.) The matrix elements of Sz in the Sy basis are then

�Sy; +|Sz|Sy; +� = �+|U †SzU |+�

�Sy; +|Sz|Sy;−� = −i�+|U †SzU |−�

�Sy;−|Sz|Sy; +� = i�−|U †SzU |+�

�Sy;−|Sz|Sy;−� = �−|U †SzU |−�
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Note that σ†
x
= σx and σ2

x
= 1, so U †U

.
= (1

√
2)(1− iσx)(1

√
2)(1 + iσx) = (1/2)(1 + σ2

x
) = 1

and U is therefore unitary. (This is no accident, as will be discussed when rotation operators
are presented in Chapter Three.) Furthermore σzσx = −σxσz, so

U †SzU
.
=

1
√
2
(1− iσx)

h̄

2
σz

1
√
2
(1 + iσx) =

h̄

2

1

2
(1− iσx)

2σz = −i
h̄

2
σxσz

= −i
h̄

2

�
0 1
1 0

��
1 0
0 −1

�
=

h̄

2

�
0 i
−i 0

�

so Sz

.
=

h̄

2

�
0 1
1 0

�
=

h̄

2
σx

in the |Sy;±� basis. This can be easily checked directly with (1.4.17b), that is

Sz|Sy;±� =
h̄

2

1
√
2
[|+� ∓ i|−� =

h̄

2
|Sy;∓�

There seems to be a mistake in the old solution manual, finding Sz = (h̄/2)σy instead of σx.

25. Transforming to another representation, say the basis |c�, we carry out the calculation

�c�|A|c��� =
�

b�

�

b��

�c�|b���b�|A|b����b��|c���

There is no principle which says that the �c�|b�� need to be real, so �c�|A|c��� is not necessarily
real if �b�|A|b��� is real. The problem alludes to Problem 24 as an example, but not that
specific question (assuming my solution is correct.) Still, it is obvious, for example, that the
operator Sy is “real” in the |Sy;±� basis, but is not in the |±� basis.

For another example, also suggested in the text, if you calculate

�p�|x|p��� =

�
�p�|x|x�

��x�
|p���dx� =

�
x�
�p�|x�

��x�
|p���dx� =

1

2πh̄

�
x�ei(p

��−p
�)x�

/h̄dx�

and then define q ≡ p�� − p� and y ≡ x�/h̄, then

�p�|x|p��� =
h̄

2πi

d

dq

�
eiqydy =

h̄

i

d

dq
δ(q)

so you can also see that although x is real in the |x�� basis, it is not so in the |p�� basis.

26. From (1.4.17a), |Sx;±� = (|+�± |−�)/
√
2, so clearly

U
.
=

1
√
2

�
1 1
1 −1

�
=

�
1/
√
2 1/

√
2

0 0

�
+

�
0 0

1/
√
2 −1/

√
2

�

=

�
1/
√
2

1/
√
2

�
[1 0] +

�
1/
√
2

−1/
√
2

�
[0 1]

=⇒ = |Sx : +��+|+ |Sx : −��−|
.
=

�

r

|b(r)��a(r)|
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27. The idea here is simple. Just insert a complete set of states. Firstly,

�b��|f(A)|b�� =
�

a�

�b��|f(A)|a���a�|b�� =
�

a�

f(a�)�b��|a���a�|b��

The numbers �a�|b�� (and �b��|a��) constitute the “transformation matrix” between the two
sets of basis states. Similarly for the continuum case,

�p
��
|F (r)|p�

� =

�
�p

��
|F (r)|x�

��x
�
|p

�
�d3x� =

�
F (r�)�p��

|x
�
��x

�
|p

�
�d3x�

=
1

(2πh̄)3

�
F (r�)ei(p

�−p��)·x�
/h̄d3x�

The angular parts of the integral can be done explicitly. Let q ≡ p
� − p

�� define the “z”-
direction. Then

�p
��
|F (r)|p�

� =
2π

(2πh̄)3

�
dr�F (r�)

�
π

0

sin θdθeiqr
� cos θ/h̄ =

1

4π2h̄3

�
dr�F (r�)

�
1

−1

dµ eiqr
�
µ/h̄

=
1

4π2h̄3

�
dr�F (r�)

h̄

iqr�
2i sin(qr�/h̄) =

1

2π2h̄2

�
dr�F (r�)

sin(qr�/h̄)

qr�

28. For functions f(q, p) and g(q, p), where q and p are conjugate position and momentum,
respectively, the Poisson bracket from classical physics is

[f, g]classical =
∂f

∂q

∂g

∂p
−

∂f

∂p

∂g

∂q
so [x, F (px)]classical =

∂F

∂px

Using (1.6.47), then, we have
�
x, exp

�
ipxa

h̄

��
= ih̄

�
x, exp

�
ipxa

h̄

��

classical

= ih̄
∂

∂px
exp

�
ipxa

h̄

�
= −a exp

�
ipxa

h̄

�

To show that exp(ipxa/h̄)|x�� is an eigenstate of position, act on it with x. So

x exp

�
ipxa

h̄

�
|x�

� =

�
exp

�
ipxa

h̄

�
x− a exp

�
ipxa

h̄

��
|x�

� = (x�
− a) exp

�
ipxa

h̄

�
|x�

�

In other words, exp(ipxa/h̄)|x�� is an eigenstate of x with eigenvalue x� − a. That is
exp(ipxa/h̄)|x�� is the translation operator with ∆x� = −a, but we knew that. See (1.6.36).

29. I wouldn’t say this is “easily derived”, but it is straightforward. Expressing G(p) as a
power series means G(p) =

�
nm�

anm�pni p
m

j
p�
k
. Now

[xi, p
n

i
] = xipip

n−1

i
− pn

i
xi = ih̄pn−1

i
+ pixip

n−1

i
− pn

i
xi

= 2ih̄pn−1

i
+ p2

i
xip

n−2

i
− pn

i
xi

. . .

= nih̄pn−1

i

so [xi, G(p)] = ih̄
∂G

∂pi
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The procedure is essentially identical to prove that [pi, F (x)] = −ih̄∂F/∂xi. As for

[x2, p2] = x2p2 − p2x2 = x2p2 − xp2x+ xp2x− p2x2 = x[x, p2] + [x, p2]x

make use of [x, p2] = ih̄∂(p2)/∂p = 2ih̄p so that [x2, p2] = 2ih̄(xp+px). The classical Poisson
bracket is [x2, p2]classical = (2x)(2p) − 0 = 4xp and so [x2, p2] = ih̄[x2, p2]classical when we let
the (classical quantities) x and p commute.

30. This is very similar to problem 28. Using problem 29,

[xi,J (l)] =

�
xi, exp

�
−ip · l

h̄

��
= ih̄

∂

∂pi
exp

�
−ip · l

h̄

�
= li exp

�
−ip · l

h̄

�
= liJ (l)

We can use this result to calculate the expectation value of xi. First note that

J
†(l) [xi,J (l)] = J

†(l)xiJ (l)− J
†(l)J (l)xi = J

†(l)xiJ (l)− xi

= J
†(l)liJ (l) = li

Therefore, under translation,

�xi� = �α|xi|α� → �α|J †(l)xiJ (l)|α� = �α|J †(l)xiJ (l)|α� = �α|(xi + li)|α� = �xi�+ li

which is exactly what you expect from a translation operator.

31. This is a continued rehash of the last few problems. Since [x,J (dx�)] = dx
� by (1.6.25),

and since J †[x,J ] = J †
xJ −x, we have J †(dx�)xJ (dx�) = x+J †(dx�)dx� = x+dx

� since
we only keep the lowest order in dx

�. Therefore �x� → �x� + dx
�. Similarly, from (1.6.45),

[p,J (dx�)] = 0, so J †[p,J ] = J †
pJ − p = 0. That is J †

pJ = p and �p� → �p�.

32. These are all straightforward. In the following, all integrals are taken with limits from
−∞ to ∞. One thing to keep in mind is that odd integrands give zero for the integral, so
the right change of variables can be very useful. Also recall that

�
exp(−ax2)dx =

�
π/a,

and
�
x2 exp(−ax2)dx = −(d/da)

�
exp(−ax2)dx =

√
π/2a3/2. So, for the x-space case,

�p� =

�
�α|x�

��x�
|p|α�dx� =

�
�α|x�

�
h̄

i

d

dx� �x
�
|α�dx� =

1

d
√
π

�
h̄k exp

�
−
x�2

d2

�
dx� = h̄k

�p2� = −h̄2

�
�α|x�

�
d2

dx�2 �x
�
|α�dx�

= −
h̄2

d
√
π

�
exp

�
−ikx�

−
x�2

2d2

�
d

dx�

��
ik −

x�

d2

�
exp

�
ikx�

−
x�2

2d2

��
dx�

= −
h̄2

d
√
π

� �
−

1

d2
+

�
ik −

x�

d2

�2
�
exp

�
−
x�2

d2

�
dx�

= h̄2

�
1

d2
+ k2

�
−

h̄2

d5
√
π

�
x�2 exp

�
−
x�2

d2

�
dx� = h̄2

�
1

d2
+ k2

�
−

h̄2

2d2
=

h̄2

2d2
+ h̄2k2
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Using instead the momentum space wave function (1.7.42), we have

�p� =

�
�α|p|p���p�|α�dp� =

�
p�|�p�|α�|2dp�

=
d

h̄
√
π

�
p� exp

�
−
(p� − h̄k)2d2

h̄2

�
dp� =

d

h̄
√
π

�
(q + h̄k) exp

�
−
q2d2

h̄2

�
dq = h̄k

�p2� =
d

h̄
√
π

�
(q + h̄k)2 exp

�
−
q2d2

h̄2

�
dq =

d

h̄
√
π

√
π

2

h̄3

d3
+ (h̄k)2 =

h̄2

2d2
+ h̄2k2

33. I can’t help but think this problem can be done by creating a “momentum translation”
operator, but instead I will follow the original solution manual. This approach uses the
position space representation and Fourier transform to arrive the answer. Start with

�p�|x|p��� =

�
�p�|x|x�

��x�
|p���dx� =

�
x�
�p�|x�

��x�
|p���dx�

=
1

2πh̄

�
x� exp

�
−i

(p� − p��) · x�

h̄

�
dx� = i

∂

∂p�
1

2π

�
exp

�
−i

(p� − p��) · x�

h̄

�
dx�

= ih̄
∂

∂p�
δ(p� − p��)

Now find �p�|x|α� by inserting a complete set of states |p���, that is

�p�|x|α� =

�
�p�|x|p����p��|α�dp�� = ih̄

∂

∂p�

�
δ(p� − p��)�p��|α�dp�� = ih̄

∂

∂p�
�p�|α�

Given this, the next expression is simple to prove, namely

�β|x|α� =

�
dp��β|p���p�|x|α� =

�
dp�φ∗

β
(p�)ih̄

∂

∂p�
φα(p

�)

using the standard definition φγ(p�) ≡ �p�|γ�.

Certainly the operator T (Ξ) ≡ exp(ixΞ/h̄) looks like a momentum translation operator. So,
we should try to work out pT (Ξ)|p�� = p exp(ixΞ/h̄)|p�� and see if we get |p� + Ξ�. Take a
lesson from problem 28, and make use of the result from problem 29, and we have

pT (Ξ)|p�� = {T (Ξ)p+ [p, T (Ξ)]}|p�� =

�
p�T (Ξ)− ih̄

∂

∂x
T (Ξ)

�
|p�� = (p� + Ξ)T (Ξ)|p��

and, indeed, T (Ξ)|p�� is an eigenstate of p with eigenvalue p� + Ξ. In fact, this could have
been done first, and then write down the translation operator for infinitesimal momenta, and
derive the expression for �p�|x|α� the same way as done in the text for infinitesimal spacial
translations. (I like this way of wording the problem, and maybe it will be changed in the
next edition.)


