Gary Nutt, Operating Systems 3/e

Instructor’s Solutions

Chapter 1: Introduction
Exercises

1. A physical resource is a physical part of the computer hardware such as a floppy diskette or the CPU. An abstract resource is a conceptual entity that must be obtained before a program can continue execution, e.g. a file descriptor representing a file.

2. The BIOS software provides a library of functions to perform basic input/output operations on the hardware on an IBM PC, including the video output (VGA, SVGA, EGA, etc.), the keyboard, mouse, floppy disk, hard disk, serial ports, parallel ports, or any other peripheral device configured into a system. Without the BIOS functions, the program would have to directly manipulate the hardware registers in a device to check the device status, to perform the operation, and to check the device completion whenever it intended to read or write the device. With the BIOS functions, an operation such as writing a character to a video display can be accomplished with a single BIOS call.

3. Assume the table has n rows and m columns (0 (i < n, 0 (j < m). Then you could let k = f(i, j) = i*n+j be the linear widget addresses.

4. Private members are only visible to member functions that implement the variable. Other objects can only know about private member data implicitly through the public member functions for the class. The abstraction of the data is the one that the class programmer explicitly provides as public member functions for referencing the private data.

5. Multipart question:

a. Subdivision: space-multiplexed

b. Personal computer: time-multiplexed

c. Whiteboard: time-multiplexed when different classes use the room, but space-multiplexed if two different people are writing

d. on different parts of the board.

e. Bench seat: space-multiplexed when two people sit on the bench.

f. File: time-multiplexed

g. Printer: time-multiplexed

h. Heap: space-multiplexed when data structure is allocated,

i. but time-multiplexed after the memory is released.

6. For a process to execute on the CPU, it must first have its corresponding program and data loaded into the primary memory. Therefore, the amount of primary memory available to be used to store programs and data is one important consideration in determining the degree of multiprogramming. Since the degree of multiprogramming specifies the number of processes that can compete for, and subsequently share, the processor, the speed of the processor will be another factor; faster processors can satisfy more processes in a unit time. If there are any other resources that the processes share, then the availability of those resources will be a factor in determining the degree of multiprogramming.

7. As mentioned in the chapter, the lower bound on computing time is the maximum of (t1, t2, ..., tN). This can be achieved if the time to perform the input/output work for ti (for each process, i) is greater than or equal to the time to do its processor work for all of the other processes, and the system is able to schedule the processes accordingly.

8. The execution time could exceed the sum of the individual execution times if the system was unable to overlap I/O with processing, even across processes. That is, there will be times when the CPU is idle, yet the system is performing I/O for some of the processes.

9. Batch processing is the preferred strategy for executing a collection of programs in cases where humans do not interact with the program when it executes, and it is important to maximize the utilization of the systems resources. Timesharing is the preferred strategy in cases where users interact with the computer at different points in the execution of the program (a read operation in a batch program will read a file, and a read operation in a timesharing system will read a user's keyboard). Timesharing emphasizes equitable sharing of the hardware resources among the users.

10. A timesharing scheduler would be designed to optimize on equitable sharing of the processor among the different users, whereas a batch scheduler would attempt to maximize the utilization of the processor.

11. All three of these Windows operating systems are built on the Windows NT code base. Versions 3.1 to 4 were released as Windows NT, Version 5 was released as Windows 2000. Code from the Windows 98 code base was combined with the NT code base for Windows XP. The distinctions are incremental, e.g., adding power management, plug-and-play support for devices, support for more types of devices, etc. The fundamental behavior of the kernel is the same for all three operating systems.

12. AT&T UNIX and BSD UNIX were both derived from Version 7 AT&T UNIX, in one case by Bell Labs employees, and in the other by University of California at Berkeley researchers and Sun Microsystems developers. The details of the two kernels quickly diverged, so that the differences were numerous, though the two versions converged in the late 1980s into Solaris.

13. POSIX.1 defines a system call interface (an abstraction) to an OS, and Linux is an implementation of the POSIX.1 interface.

14. Windows hardware abstraction layers are intended to construct an abstract representation of different hardware platforms so that they all look somewhat similar to the Windows OS. It is a classic application of the software abstraction idea. This simplifies the job of porting the OS across different hardware platforms.

15. A Unix makefile is similar to a batch file in that it results in a series of commands issued to complete a job specified in a file. However, a makefile specification is much different from the described control file in the way it issues commands since the control file simply issues commands from each line of the file in sequence. A makefile on the other hand includes entries which include: target to make, target dependency list, and a command line. The makefile specification may include any number of such entries in any order. For example:

target1: target2, <rest of dependency list>;

 <command>;

target2: <dependency list>;

 <command>

So when a makefile is executed, rather than simply executing each command in the order it appears in the file, the target to be made is first checked to see if anything in its dependency list is yet another target which must be built first and if the target is older than what it is dependent upon (i.e. out of date). This dependency chain is followed until a target is brought up to date with its associated build command, and then the control backtracks trying to build targets the original target depends upon until it can itself be built. Thus a makefile may result in different sequences of commands based on the current chain of targets/dependencies and staleness of targets, and may bear no resemblance to the order that command lines appear in the file.

16. Timesharing stimulated development of the idea of processes, memory management, scheduling, and protection/security technology. (This is a slightly more comprehensive set of things than are in the figure in the chapter).

17. Embedded systems is the area where real-time support was refined and made to work well. The real-time technology in contemporary operating systems is generally from embedded systems.

©2004 Addison Wesley

