1A.1 Estimation of dense-gas viscosity.

a. Table E.1 gives T, = 126.2 K, p. = 33.5 atm, and p. = 180 x 10% g/cm-s

for N;. The reduced conditions for the viscosity estimation are then:
pr = p/pc = (1000 + 14.7)/33.5 x 14.7 = 2.06
T, =T/T. = (273.15+ (68 — 32)/1.8)/126.2 = 2.32

At this reduced state, Fig. 1.3-1 gives yu, = 1.15. Hence, the predicted viscosity
isp=pr/pe =1.15x180x107% = 2.07x10™* g/cm-s. This result is then converted
into the requested units by use of Table F.3-4:

p=2.07x10"*x6.7197 x 1072 = 1.4 x 107* lby, /ft-s



1A.2 Estimation of the viscosity of methyl fluoride.

a. CH3F has M = 16.04—1.008+19.00 = 34.03 g/g-mole, Tc = 4.55+273.15 =
277.70 K, p. = 58.0 atm, and V, = 34.03/0.300 = 113.4 cm®/g-mole. The critical

viscosity is then estimated as

fe = 61.6(34.03 x 277.70)1/2(113.4) 72/ = 255.6 micropoise
from Eq. 1.3-1a, and

fre = 7.70(34.03)1/%(58.0)2/3(277.7) 7Y/ = 263.5 micropoise

from Eq. 1.3-1b.

The reduced conditions for the viscosity estimate are T, = (370 4 273.15)/277.70 =
2.32, p, = 120/58.0 = 2.07, and the predicted u, from Fig. 1.3-1 is 1.1. The
resulting predicted viscosity is

p= prpe =1.1 x 255.6 x 107% = 2.8 x 10™* g/cm-s via Eq.1.3-1a, or
1.1 x 263.5 x 1075 = 2.9 x 10™%g/cm-s via Eq.1.3-1b.



1A.3 Computation of the viscosities of gases at low density.

Equation 1.4-14, with molecular parameters from Table E.1 and collision integrals
from Table E.2, gives the following results:

For O: M = 32.00, 0 = 3.433A, ¢/k = 113 K. Then at 20°C, xT/ec =
293.15/113 = 2.594 and Q, = 1.086. Equation 1.4-14 then gives

s v/32.00 x 293.15
(3.433)2 x 1.086

=2.02x107* g/cm-s

=2.02 x 107° Pas

=2.02 x 10~? mPa-s.

= 2.6693 x 10~

The reported value in Table 1.1-3 is 2.04 x 10~2 mPa-s.

For Np: M = 28.01, 0 = 3.667A, e/k = 99.8 K. Then at 20°C, /e =
293.15/99.8 = 2.937 and Q, = 1.0447. Equation 1.4-14 then gives

s v/28.01 x 293.15
(3.6672 x 1.0447

=1.72x107* g/cm-s

=1.72 x 107% Pa-s

= 1.72 x 10™? mPa-s.

1= 2.6693 x 10~

The reported value in Table 1.1-3 is 1.75 x 10~2 mPa-s.

For CHy, M = 16.04, o = 3.780A, ¢/k = 154 K. Then at 20°C, kT/e =
293.15/154 = 1.904 and Q, = 1.197. Equation 1.4-14 then gives

5 v/16.04 x 293.15
(3.780)2 x 1.197

=1.07x 107* g/cm's

= 1.07 x 107° Pa-s

= 1.07 x 102 mPa-s.

= 2.6693 x 10~

The reported value in Table 1.1-3 is 1.09 x 10~2 mPa-s.
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1A.4 Gas-mixture viscosities at low density.

The data for this problem are as follows:

Component M p, poise x 10°
1(Hy) 2.016 88.4
2(CCLF2) 120.92 124.0

Insertion of these data into Eq. 1.4-16 gives the foloowing coefficients for mixtures
of Hy and Freon-12 at this temperature:

@11 = @22 =1.0 . .
1 2.016 \ /* [ 88.4 \'/? /120.92\ /4]
Prp=—\{1+ 1+ | —=
NG 120.92 124.0 2.016
= 3.934
g, = L (1, 12092\ 1240\ ( 2016 1]
TR 2.016 88.4 120.92

= 0.0920

Equation 1.4-15 then gives the predicted mixture viscosities:

1= D= Yo = A= B := A+ B=

1—x Zxﬂ(blﬁ Z.’Eﬂ‘bzlg zl#]-/ 21 IEQ,U,Q/ ZZ Hmix X 10° Hobs,poise X 108
0.00 3.934 1.000 0.0 124.0 (124.0) 124.0

0.25 3.200 0.773 6.9 120.3 127.2 128.1

0.50 2.467 0.546 18.1 113.6 131.7 131.9

0.75 1.734 0.319 38.2 97.2 135.4 135.1

1.00 1.000 0.092 88.4 0.0 (88.4) 88.4



1A.5 Viscosities of chlorine-air mixtures at low density.

Equation 1.4-14 and Tables E.1, E.2 give the following viscosities at 75°F(=
273.15 4+ (75 — 32)/1.8 = 297.03 K) and 1 atm:

For component 1, (Clz), M; = 70.91, oy = 4.11510\, e1/k = 357K, hence,
kT /e1 = 297.03/357 = 0.832 and Q,; = 1.754, and

5 /70.91 x 297.03
(4.115)2 x 1.754

p1 = 2.6693 x 10~ =1.304 x 10™* g/cm-s = 0.01304 cp.

For component 2, (air), Mz = 28.97, 0 = 3.617;&, e1/k = 97.0K; hence, kT'/e1 =
297.03/97.0 = 3.062 and ©,, ; = 1.033, and

5 V/28.07 x 207.03
(3.617)% x 1.033

py = 2.6693 x 10~ =1.832 x 107* g/cm-s = 0.01832 cp.

Eq. 1.4-16 then gives the following coefficients for Eq. 1.4-15 at this temperature:

@112(1)22:1.0
- 12
B, = L (14 091\ 001304 2 r98.97\'/*
2= R 28.97 L 0.01832 70.91
= 0.5339
- 32
B, = L (142897 1/ L (001832 Y2 r70.91\'*
TR 70.91 0.01304 28.97
= 1.8360

Equation 1.4-15 then gives the predicted mixture viscosities:

zy = Y= Yo = A= B := A+ B =

1 -z Yegbis YzpPap zip/ Yy Tap2/ Yy Hmixep. X 10°
0.00 0.5339 1.000 0.0 0.01832 0.0183

0.25 - 0.6504 1.2090 0.005012 0.011365 0.0164

0.50 0.7670 1.4180 0.008501 0.006460 0.0150

0.75 0.8835 1.6270 0.011070 0.002815 0.0139

1.00 1.000 1.8360 0.01304 0.0 0.0130



1A.6 Estimation of liquid viscosity.

a. The calculated values for Eq. 1.5-9 at 0°C and 100°C are as follows:

T K
p, g/cm®
V= M/p, cm3 /g-mole
Afjvap,T;,, cal/g-mole= 897.5 x 18.016 x 252.16/453.59
AUyap 1,/ RT = 8989/1.98721/T
exp 0.408AU,.p 1,/ RT
Nh / v, g/cm-s
Predicted liquid viscosity, g/cm-s

273.15
0.9998
18.01
8989.
16.560
859.6

2.22 x 10™*
0.19

b. The predicted values for Eq. 1.5-11 at 0°C and 100°C are:

. TK
NR/V, g/cm-s
exp(3.8T4/T)

Predicted liquid viscosity, g/cm-s

Summary of results:

Temperature, °C

Observed viscosity, centipoise[=]g/cm-sx100
Prediction of Eq. 1.5-9

Prediction of Eq. 1.5-11

273.15

2.22 x 10~*
179.7
0.0398

0
1.787
19.
3.98

373.15
0.9584
18.80
8989.
12.120
140.5

2.12 x 1074
0.0298

373.15

2.12 x 104
44.70
0.0095

100
0.2821
2.98
0.95

Both equations give poor predictions. This is not surprising, since the empirical
formulas in Eqgs. 1.5-8 et seq. are inaccurate for water and for other associated

liquids.



1A.7 Molecular velocity and mean free path.

From eq. 1.4-1, the mean molecular velocity in Oy at 273.2 K is

. \/SRT B \/8 x 8.31451 x 107 x 273.2

_ 4
v % 33.00 =4.25 x 10* cm/s

From eq. 1.4-3, the mean free path in O; at 1 atm and 273.2 K is

RT 82.0578 x 273.2

A= =~ = =93x%x10"%cm
V2rd2pN  V27(3 x 10—8)2 x 1 x 6.02214 x 1023

Hence, the ratio of the mean free path to the molecular diameter is (9.3 x 10™%/3 x
107%) = 3.1 x 10* under these conditions. At liquid states, on the other hand, the
corresponding ratio would be on the order of unity or even less.



1B.1 Velocity profiles and stress components
a. T, =T, =—pb, and all other 7; are zero.
pv,v, = pb®y*, and all other pv;v; are zero.

b. 7., =17, =—-2ub, and all other 7; are zero.

pv,v, =pb’y?, pv.v, = pv,v, = pb’xy, pv,v, = pb*x*, and
all other pv;v; are zero.

c. All 7; are zero |
pv,v, = pb*y?, pv,v, = pv,v, =-pb’xy, pv,v, = pb*x*
and all other pv,v; are zero.

d. T, =7, =ub, 7,, =-2ub, and all others are zero. the
components of pvv may be given in the matrix:

pv,v, =3pb*x*  pv,v, =ipb’xy pv,v, =-}pbxz

pvv=| pvv, =1pb*xy poo, =1pb’y*  pv,v, =-1pb’yz
pv,v, =-3pb’xz pv,v, =-1pb’yz  pv,v, = pb*z’



1B.2 A fluid in a state of rigid rotation

a. A particle within a rigid body rotating with an angular
velocity vector w has a velocity given by v =[w xr]. If the angular
velocity vector is in the +z-direction, then there are two nonzero
velocity components given by v, =-w,y and v, =+w,x. Hence the

magnitude of the angular velocity vector is b in Problem 1B.1(c).
b. For the velocity components of Problem 1B.1(c),

d
——l+—a—vi:0 and Z]y—o”v"=2b

ox dy ox dy

c. In Eq. 1.2-4, we selected only the linear symmetric
combinations of derivatives of the velocity, so that in pure rotation
there would be no viscous forces present. In (b) we see that the
antisymmetric combination is nonzero in a purely rotational motion.




1B.3 Viscosity of suspensions
Expanding the Mooney expression, we get (with €= ¢/¢ )

2 3
E.ﬁ:l.*. _ﬂ +__1_ _%_?_ +_}_ _i.ql_ +...
Uy 1-¢) 2 1-¢ 3 1-¢
=1+§¢(1+e+52+---)+%cpz(l+2e+---)+%¢3(1+---)+---

:1+.§¢+¢2 g§+§_1_ +¢3 12_5_+2§_1_+§.L2 +--.
2 8 2¢, 8 49, 20

The first two terms match exactly with the first two terms in Eq.
1B.3-1. We can make the third term match exactly, by setting

g§+§i=7.17 whence ¢, =0.618

8 29,

and the coefficient of ¢* becomes

125 25 1 5 1

+— +— =20.26
48 4 0.618 20.382

If we try ¢, = 0.70, the coefficients of ¢ and ¢> become 6.70 and 17.6
respectively. This gives a somewhat better find of Vand's data.



1C.1 Some consequences of the Maxwell-Boltzmann equation
a. The mean speed is

oo - oo _z2
Zo IO u’e /2KTdu_ 2kT fo e dg _2kT 5 [8kT
W7 Vo

oo —mu? - oo _g2 -
[, ute [2XT gy, m jo E2e74 dE m
b. First rewrite Eq. 1C.1-4 as

J'°° n e-mu,%/ixr du, f°°

- —c0 —o0

—mu? [2XT o .2
e/ du, [~ ey,
X oo _ 2 : oo _ 2/ ) oo _ 2

J’_ e mux/ZKTdux J‘ e muy/ZKTduy J‘—we muz/ZKTduz

The integral over u, in the numerator of the first factor is zero
because the integrand is the product of a factor "u," (an odd function
of the integration variable about u, = 0) and an exponential function

(an even function), and the range of integration extends equally far
in the positive and negative directions.

¢. The mean kinetic energy per molecule is

™ 2/
J'O u4e-—mu /ZKTdu
m —

oo 2 -
.[o y2e"mu [2KT du

okT [y e dE
mJygreag

N7

oojw

mu? =

m KT =

N[
Nof—
N
N

5

-
S

and is thus kT for each degree of freedom.
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1C.2 The wall collision frequency
When we change to dimensionless variables in the second
line of Eq. 1C.2-1, we get

e e e e

{zmr) Co 2B B 7)o

|

=12



1C.3 The pressure in an ideal gas
a. The dimensions of the quantities in Eq. 1C.3-1 are

S [=] I*

i [=] L/

At [=] ¢

m [=] M

f =] /ey )
dudu,du, [=] (L/t)’

Using these units, one finds that the expression on the right of Eq.
1C.3-1 has units of M/Lt* (which are the same as the units of force
per area).

b. Combining Egs. 1C.1-1 and 1C.3-1 we get

p= znm(zm) [l ue™ ”"+”""")/2KTdu du, du,

=2nm —2—:&—) ” :uﬁe-mui/zxr du. - I:e—mui/ZKT du, - e~ /KT gy
— 2nm %)(_71;]3/2 [F&2eEag [ ey |7 et dg

- 2o 2T LY ) ) ) =
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1D.1 Uniform rotation of a fluid
a. For the special case that w =6 _w, we get

v=[wxr]=332 36,8 wx, = W(81€15Y +8,6,5%) = w(— 8,y + 8,x)

Then using Egs. A.6-1, 2, 13 and 14, we can get the velocity
components in cylindrical coordinates

v, =(v-8,)= w((——Sxy +8yx).8,)= w(-ycos 0 + xsin 0)

= w(-rsinOcos O + xcos Bsin O) =0

vy =(v-8y)= w((——Sxy +8yx)-89)= w((-y)(-sin 6) + xcos 0)
= w(rsinOsin O + r cos 6 cos B) = wr

Therefore, the angular velocity of every point in the fluid is v, /r =w,
which is a constant, and there is no radial velocity. This is the way a
rigid body rotates at constant angular velocity.

b. The vector operations are (using the abbreviated notation
of §A.9 and the Einstein summation convention)

w, 6. =€, w_ =0

imn“Y'm“in nmn*Y'm

(V-v)=0dv, = d,&,,,w,x, =€

1TmnTTmTTn

{Vv}, ={V[wx r]}i], = 08y WXy = €y W, 0= €1 W,

jmnYmYin
-_— —_ t
= {;V}ji_ {;V}ij

and from this last result we see that Vv +(Vv)' =0.
¢. The results above indicate that for a fluid is a state of pure
rotation, the tensor 7 is identically zero. That is, there are no viscous

stresses present in the fluid. This was the assertion made just before
Eq. 1.2-4.
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1D.2 Force on a surface of arbitrary orientation.

a. We can specify the surface area and the orientation of the
surface of AOBC as ndS. To project this surface onto the yz-plane,
we take the dot product with 6, so that the area of AOBC is
(n-8,)ds. |

b. The force per unit area on three triangles perpendicular
to the three coordinate axes are

Force on AOBC=6,7,, +8,7,, +9,7,,
Force on AOCA=98,7,, +8 1, +8. 7,
Force on AOAB=d,7,, +6,7,, +6,7,
¢. Force balance on the volume OABC is then

n,dS = (8,7, +8,7, +8,7, )(n-8,)dS

XXX z°7Xz

+(8,7,, +8,7,, +8,7,, )(n-8,)dS

xyx

+(8,7, +8,m, +8,7, )(n-8,)dS

x?¥zx
or

T, = [n°6x6xnxx]+[n'8x6y”xy]+[n'sxsznxz]
+[n-8,8,7,,|+[n-8,8,7,|+[n-8,5,7,]
+[n-8,8,7,]+[n-8,8,7,]+[n-83, 7]

zoyzy z27z°7zzZ

=;§j)[n-8i8j7zi]-]=[n-n]
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