Chapter 1

Exercise 1:

At equilibrium:

$$K_{a} = K_{x} K_{\phi} K_{P} = \left[\frac{X_{B} X_{C}}{X_{A}} \right] \left[\frac{\overline{\phi_{B} \phi_{C}}}{\overline{\phi_{A}}} \right] \left[\frac{P_{tot} P_{tot}}{P_{tot}} \right] [1 \text{ atm}]^{-1}$$
 (1)

Assuming ideal behavior,

$$K_a = \frac{P_B^o \cdot P_C^o}{P_A^o} = \frac{X_B P_{tot} \cdot X_C P_{tot}}{X_A P_{tot}} = \frac{X_B X_C}{X_A} \cdot P_{tot}$$
 (2)

$$X_B = X_C \tag{3}$$

$$1 = X_A + X_B + X_C \tag{4}$$

Using equations (2), (3), and (4), solve for the three unknown mole fractions and find the fractional conversion of propane at each temperature.

$$f_A = 1 - X_A \tag{5}$$

Or an Alternate Solution:

Write a mole balance for the reaction.

(Where f_A = fractional conversion of propane)

	Initial Moles	Change in Moles	Final Moles
A	$n_A^{\ o}$	$-n_A^o f_A$	$n_A^o(1-f_A)$
В	0	$n_A{}^o f_A$	$n_A^{o}(f_A)$
C	0	$n_A{}^o f_A$	$n_A^{o}(f_A)$
Total	$n_A^{\ o}$	$n_A^{\ o} f_A$	$n_A^o (1 + f_A)$

Express the mole fraction of each species in terms of f_A .

$$X_A = \frac{\text{(Moles of A)}}{\text{(Total Moles)}} = \frac{n_A^o (1 - f_A)}{n_A^o (1 + f_A)} = \frac{(1 - f_A)}{(1 + f_A)}$$
(6)

$$X_B = \frac{f_A}{1 + f_A} \tag{7}$$

$$X_C = \frac{f_A}{1 + f_A} \tag{8}$$

Substitute equations (6), (7), and (8) into equation (2), above, and solve for fractional conversion (f_A).

$$K = \frac{f_A^2}{(1 + f_A)(1 - f_A)} \cdot P_{tot} \tag{9}$$

(a) 400° C(a) 500° C(a) 600° CConversion (f_A) 0.02280.10120.3076

Exercise 2:

Assume 100% conversion of propane at each temperature, because the equilibrium constants are so high. A major impediment is the oxidation of propane to CO_2 (not shown).

Exercise 3:

Part a)

Express the equilibrium constants for each step in terms of partial pressures.

$$K_{a1} = K_{P1} = \frac{P_B}{P_A} \tag{1}$$

$$K_{a2} = K_{P2} = \frac{P_C}{P_R} \tag{2}$$

$$K_{a3} = K_{P3} = \frac{P_A}{P_C} = \frac{P_A}{P_B} \cdot \frac{P_B}{P_C}$$
 (3)

Rewrite equation (3) in terms of K_1 and K_2 .

$$K_3 = \frac{1}{K_{P1}} \cdot \frac{1}{K_{P2}} \tag{4}$$

Therefore, $K_3 = 0.108$.

Part b)

Check the independence of the 3 reactions.

$$0 = \sum_{i=1}^{3} v_i \cdot A_i \quad \text{For all 3 equations.}$$
 (5)

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
 And Det(Matrix) = $(-1 \cdot -1) - (-1 \cdot 1) = 0$

Therefore, all equations are not independent (i.e. only need 2 equations to solve).

Assuming a basis of 1 mole of 1-butene, write a mole balance for the system.

	Initial Moles	Change	Final Moles
A	1	- ξ ₁ - ξ ₃	$1-\xi_1-\xi_3$
В	0	ξ_1	ξ1
C	0	ξ_3	$\dot{\xi_3}$
Total	1	0	1

Rewrite equations (1) and (3) in terms of ξ_1 and ξ_2 .

$$K_{a1} = \frac{P_B}{P_A} = \frac{X_B P_{tot}}{X_A P_{tot}} = \frac{\xi_1}{1 - \xi_1 - \xi_3}$$
 (6)

$$K_{a3} = \frac{P_C}{P_B} = \frac{\xi_3}{\xi_1} \tag{7}$$

Solving for ξ_1 and ξ_3 gives an equilibrium conversion of 1-butene = 0.932.

Mole fractions at equilibrium:

$$X_{1\text{-butene}} = 0.068$$

 $X_{\text{cis-2-butene}} = 0.296$
 $X_{\text{trans-2-butene}} = 0.636$

Exercise 4:

First, find K for each reaction from DG° , using equation (1), assuming ideal behavior.

$$\ln(K) = \frac{-\Delta G^0}{R_g \cdot T} \tag{1}$$

Reaction	ΔG^0 (kJ mol ⁻¹)	K
1	14.85	0.078
2	10.42	0.167
3	15.06	0.075

Write a mole balance on the system of reactions, assuming a basis of 1 mole toluene.

	Initial Moles	Change	Final Moles
Toluene (A)	1	$-2\xi_1-2\xi_2-2\xi_3$	$1-2\xi_1-2\xi_2-2\xi_3$
Ortho-Xylene (B)	0	ξ_{l}	ξ_{I}
Meta-Xylene (C)	0	ξ_2	ξ_2
Para-Xylene (D)	0	ξ_3	ξ_3
Benzene (E)	0	$\xi_1 + \xi_2 + \xi_3$	$\xi_1 + \xi_2 + \xi_3$
TOTAL	1	0	1

Express the equilibrium constants in terms of ξ_1 , ξ_2 , and ξ_3 .

$$K_{1} = \frac{X_{B} \cdot X_{E}}{(X_{A})^{2}} = \frac{\xi_{1}(\xi_{1} + \xi_{2} + \xi_{3})}{(1 - 2\xi_{1} - 2\xi_{2} - 2\xi_{3})^{2}}$$
(2)

$$K_2 = \frac{\xi_2(\xi_1 + \xi_2 + \xi_3)}{(1 - 2\xi_1 - 2\xi_2 - 2\xi_3)^2}$$
(3)

$$K_3 = \frac{\xi_3(\xi_1 + \xi_2 + \xi_3)}{(1 - 2\xi_1 - 2\xi_2 - 2\xi_3)^2} \tag{4}$$

Solve for ξ_1 , ξ_2 , and ξ_3 and calculate the equilibrium compositions of each species.

The equilibrium mole fractions are:

Toluene = 0.470 Ortho-Xylene = 0.065 Meta-Xylene = 0.138 Para-Xylene = 0.062 Benzene = 0.265

Since para-xylene has a smaller kinetic diameter than either ortho- or meta-xylene, a shape selective catalyst that allows mostly para-xylene to diffuse out of it will shift the product distribution.

Exercise 5:

Part a)

Assuming a basis of 1 mole of feed, write an overall mole balance.

	Initial Moles	Change	Final Moles
Acetylene (A)	0.5	$-\xi_1$	$0.5 - \xi_1$
HCl (B)	0.5	- $\xi_1 - \xi_2$	0.5 - $\xi_1 - \xi_2$
Vinyl Chloride (C)	0	$\xi_1 - \xi_2$	$\xi_1 - \xi_2$
1,2 Dichloroethane (D)	0	$oldsymbol{\xi}_2$	ξ_2
TOTAL	1	- $\xi_1-\xi_2$	1 - $\xi_1 - \xi_2$

Express the equilibrium constants in terms of ξ_1 , ξ_2 , and ξ_3 .

For the reaction that forms vinyl chloride (C),

$$K_{a1} = K_{x1} K_{\phi 1} K_{P1} = \left[\frac{X_c}{X_A X_B} \right] \left[\frac{\overline{\phi_c}}{\overline{\phi_A \phi_B}} \right] \left[\frac{P_{tot}}{P_{tot} P_{tot}} \right] [1 \text{ atm}]$$
 (1)

Assuming ideal behavior,

$$K_{a1} = \frac{X_C}{X_A X_B} \cdot \frac{1}{P_{tot}} = \frac{(\xi_1 - \xi_2)(1 - \xi_1 - \xi_2)}{(0.5 - \xi_1)(0.5 - \xi_1 - \xi_2)} \cdot \frac{1}{5}$$
 (2)

Similarly for the reaction that forms 1,2 dichloroethane,

$$K_{a2} = \frac{X_D}{X_C X_R} \cdot \frac{1}{P_{tot}} = \frac{\xi_2 (1 - \xi_1 - \xi_2)}{(\xi_1 - \xi_2)(0.5 - \xi_1 - \xi_2)} \cdot \frac{1}{5}$$
 (3)

Solve for ξ_1 , ξ_2 , and ξ_3 and calculate the equilibrium compositions of each species.

$$\begin{aligned} X_{\text{Acetylene}} &= 0.012 \\ X_{\text{HCl}} &= 0.002 \\ X_{\text{Vinyl chloride}} &= 0.976 \\ X_{1,2 \text{ Dichloroethane}} &= 0.010 \end{aligned}$$

Find the fractional conversion of acetylene.

$$f_A^{eq} = 1 - \frac{n_A}{n_A^o} = 0.988 \tag{4}$$

Part b)

Write another mole balance similar to part (a) but now add 9 moles of inert gas.

	Initial Moles	Change	Final Moles
Acetylene (A)	0.5	$-\xi_1$	$0.5 - \xi_1$

HCl (B)
 0.5

$$-\xi_1 - \xi_2$$
 $0.5 - \xi_1 - \xi_2$

 Vinyl Chloride (C)
 0
 $\xi_1 - \xi_2$
 $\xi_1 - \xi_2$

 1,2 Dichloroethane (D)
 0
 ξ_2
 ξ_2

 Inert Gas (I)
 9
 0
 9

 TOTAL
 10
 $-\xi_1 - \xi_2$
 $10 - \xi_1 - \xi_2$

Express the equilibrium constants in terms of ξ_1 , ξ_2 , and ξ_3 .

$$K_{a1} = \frac{X_C}{X_A X_B} \cdot \frac{1}{P_{tot}} = \frac{(\xi_1 - \xi_2)(10 - \xi_1 - \xi_2)}{(0.5 - \xi_1)(0.5 - \xi_1 - \xi_2)} \cdot \frac{1}{5}$$
 (5)

$$K_{a2} = \frac{X_D}{X_C X_B} \cdot \frac{1}{P_{tot}} = \frac{\xi_2 (10 - \xi_1 - \xi_2)}{(\xi_1 - \xi_2)(0.5 - \xi_1 - \xi_2)} \cdot \frac{1}{5}$$
 (6)

Solve for ξ_1 , ξ_2 , and ξ_3 and calculate the equilibrium compositions of each species.

$$\begin{split} X_{Acetylene} &= 0.0014 \\ X_{HCl} &= 0.0012 \\ X_{Vinyl\ Chloride} &= 0.0510 \\ X_{1,2\ Dichloroethane} &= 0.0002 \\ X_{Inert} &= 0.946 \end{split}$$

Find the fractional conversion of acetylene.

$$f_A^{eq} = 1 - \frac{n_A}{n_A^o} = 0.974 \tag{7}$$

Exercise 6:

Write the rate expression for the 2-propanol (P) reaction, rearrange, and integrate.

$$\frac{dn_P}{dt} = -k \cdot n_P \tag{1}$$

$$\int_{n_p^0}^{n_p} \frac{dn_p}{n_p} = -\int_0^t k \cdot dt \tag{2}$$

$$\ln\left(\frac{n_P}{n_P^o}\right) = -kt \tag{3}$$

Before plotting the data, convert $\frac{g_{\text{Acetone}}}{g_{\text{Propanol}}}$ to $\frac{n_P}{n_P^o}$.

$$\frac{g_a}{g_P} \cdot \frac{60g_P}{1mol_P} \cdot \frac{1mol_a}{58g_a} = \frac{n_a}{n_P}$$
 (4)

$$n_{\rm a} = n_{\rm a}^{o} + \left(\frac{-1}{1}\right)(n_{P} - n_{P}^{o}) \tag{5}$$

The first order rate constant (k) is the negative of the slope = $8.39 \times 10^{-6} \text{ min}^{-1}$.

Exercise 7:

$$H_3C$$
 + H_3C + H_3C H_3

Assuming constant volume, write the second order rate equation for DMB.

$$\frac{dC_A}{dt} = -k \cdot C_A C_B \tag{1}$$

Now find C_B in terms of C_A .

$$C_B = C_B^o + \left(\frac{-1}{-1}\right)(C_A - C_A^o)$$
 And $C_A^o = C_B^o$ (2)

Therefore, $C_B = C_A$.

Rewrite the rate equation (equation (1)) in terms of f_A .

$$-C_A^o \frac{df_A}{dt} = -k(C_A^o)^2 (1 - f_A)^2$$
 (3)

$$\int_{0}^{f_{A}} \frac{df_{A}}{(1 - f_{A})^{2}} = \int_{0}^{t} kC_{A}^{o} \cdot dt \tag{4}$$

Solve this integral

$$\frac{f_A}{1 - f_A} = kC_A^o t \tag{5}$$

Finally, plot $\frac{f_A}{1-f_A}$ vs. time at each temperature and find slope, kC_A^o .

Exercise 8:

This reaction can be assumed to be of the form $A \longrightarrow Products$.

Assuming the reaction to be 1st order, write the appropriate first order rate expression and integrate.

$$\frac{dC_A}{dt} = -kC_A \tag{3}$$

$$\ln\left(\frac{C_A}{C_A^o}\right) = -kt$$
(4)

Now a plot of $\ln \left(\frac{C_A}{C_A^o} \right)$ vs. time should be linear with a slope = -k.

Assuming $\frac{C_A}{C_A^o}$ is equivalent to relative absorbance, a plot of ln(relative adsorbance) vs. time should be linear with slope = -k.

The data appear first order with a rate constant, $k = 0.0081 \text{ min}^{-1}$. Analogous attempts to fit zero and second order reaction rate experiments failed.

Exercise 9:

Express n_A and n_B in terms of fractional conversion of A (f_A) .

$$n_A = n_A^o - n_A^o \cdot f_A \tag{1}$$

$$n_R = n_R^o - 2n_A^o \cdot f_A \tag{2}$$

For constant density (ρ) , and constant volume (V), $\frac{n_i}{V}$ can be expressed as concentration (C_i) .

$$C_A = C_A^o - C_A^o \cdot f_A \tag{3}$$

$$C_B = C_B^o - 2C_A^o \cdot f_A \qquad \text{And } \frac{C_B^o}{C_A^o} = 3 \text{ so,}$$
 (4)

$$C_{R} = C_{A}^{o}(3 - 2f_{A}) \tag{5}$$

Substitute equations (3) and (5) into the given rate expression.

$$\frac{dC_A}{dt} = \frac{d(C_A^o - C_A^o \cdot f_A)}{dt} = -C_A^o \cdot \frac{df_A}{dt}$$
 (6)

$$\frac{df_A}{dt} = \frac{kC_A C_B^2}{C_A^0} = kC_A^{0^2} (1 - f_A)(3 - 2f_A)^2 \tag{7}$$

Separate variables and integrate.

$$\int_{0}^{0.5} \frac{df_A}{(1 - f_A)(3 - 2f_A)^2} = \int_{0}^{10} kC_A^{o^2} \cdot dt$$
 (8)

Solving for the rate constant (k) gives $k = 120 \text{ L}^2 \text{ mol}^{-2} \text{ min}^{-1}$.

Exercise 10:

Calculate the total moles of gas initially in the system for N_2 : H_2

$$P_{648K}^{o} = T_{648K} \left(\frac{P_{298K}^{o}}{T_{298K}} \right) \tag{1}$$

$$n_{tot}^{o} = \frac{P^{o}V}{R_{o}T^{o}} = 0.013 \,\text{mol}$$
 (2)

Write a gas phase mole balance.

	Initial Moles	Change	Final Moles
N_2	9.75×10^{-3}	$-\xi(t)$	9.75×10^{-3} - $\xi(t)$
H_2	3.25×10^{-3}	$-3\xi(t)$	$3.25 \times 10^{-3} - 3\xi(t)$
He	0	0	0

NH₃ 0 0 0 0 Total 0.013
$$-4\xi(t)$$
 0.013 $-4\xi(t)$

Derive the rate expression using the ideal gas law and express the rate in terms of $\frac{dP_{tot}}{dt}$.

$$P_{tot}V = n_{tot}R_gT \qquad \longrightarrow \qquad \frac{dn_{tot}}{dt} = \frac{V}{R_gT} \left(\frac{dP_{tot}}{dt}\right) \tag{3}$$

$$\frac{dn_{tot}}{dt} = -4\frac{d\xi}{dt} \qquad \text{And} \qquad \frac{dn_{N_2}}{dt} = -\frac{d\xi}{dt}$$
 (4)

Therefore,
$$\frac{d\xi}{dt}$$
 is the rate of reaction, and $\frac{d\xi}{dt} = \frac{-V}{4R_gT} \left(\frac{dP_{tot}}{dt}\right)$. (5)

Plot Total Pressure vs. Time to find the rate of change in pressure (i.e. slope)

From the graph $\frac{dP_{tot}}{dt}$ = -1.9292 torr min⁻¹.

Repeat the same process for the other gas ratios and solve for $\frac{d\xi}{dt}$.

Ratio (N₂:H₂:He)
$$\frac{dP_{tot}}{dt}$$
 (torr min⁻¹) $\frac{d\xi}{dt}$ (mol min⁻¹)
3:1:0 -1.9292 8.17 x 10⁻⁶ 1:1:2 -0.8947 3.79 x 10⁻⁶ 1:3:0 -0.5668 2.40 x 10⁻⁶

Write the Goldberg-Waage form of the rate equation and take the natural log of both sides.

$$rate = \frac{d\xi}{dt} = k[N_2]^{\alpha} [H_2]^{\beta}$$
 (6)

$$\ln(\text{rate}) = \ln(k) + \alpha \ln[N_2] + \beta \ln[H_2]$$
 (7)

To find α plot ln(rate) vs. $ln[N_2]$ at a constant $[H_2]$, where $ln[N_2] = ln[moles \ of \ N_2]$.

rate	moles N₂	moles H ₂
8.17×10^{-6}	3	1
3.79×10^{-6}	1	1
2.40 x 10 ⁻⁶	1	3

From the graph, $\alpha =$ slope. Similarly, find β by plotting ln(rate) vs. ln[H₂] while holding [N₂] constant.

$$\begin{array}{l} \alpha = 0.70 \\ \beta = -0.42 \end{array}$$

Therefore, the final rate expression is rate = $k[N_2]^{0.70}[H_2]^{-0.42}$. Finally, find the rates of ammonia synthesis for each ratio.

$$\frac{dn_{NH_3}}{dt} = 2\frac{d\xi}{dt} \tag{8}$$

Therefore,

N₂:H₂:He
$$\frac{dn_{NH_3}}{dt} \left(\frac{\text{mol}}{\text{gcat} \cdot \text{min}} \right)$$
3:1:0
$$8.17 \times 10^{-5}$$
1:1:2
$$3.79 \times 10^{-5}$$
1:3:0
$$2.40 \times 10^{-5}$$

Exercise 11:

In Example 1.5.6 the following equations for t_{max} and C_B are derived.

$$t_{\text{max}} = \frac{1}{k_2 - k_1} \cdot \ln \left[\frac{k_2}{k_1} + \frac{k_2}{k_1} \frac{C_B^o}{C_A^o} - \left(\frac{k_2}{k_1} \right)^2 \frac{C_B^o}{C_A^o} \right]$$
 (1)

$$C_B = C_B^o \cdot e^{(-k_2 t)} + \frac{k_1 C_A^o}{k_2 - k_1} \left[e^{(-k_1 t)} - e^{(-k_2 t)} \right]$$
 (2)

Assuming $C_B^o = 0$ and $k_2 = k_I$, C_B and $t_{\text{max}} = \frac{0}{0}$. Therefore, use L'Hopital's rule to find t_{max} and C_B .

$$\lim_{k_2 \to k_1} t_{\text{max}} = \lim_{k_2 \to k_1} \frac{\frac{1}{k_1}}{k_2} = \frac{1}{k_1}$$
(3)

$$\lim_{k_2 \to k_1} C_B = \lim_{k_2 \to k_1} k_1 C_A^o t_{\text{max}} \cdot e^{(-k_2 t_{\text{max}})}$$
(4)

Substituting for t_{max} gives:

$$C_B^{\text{max}} = \frac{C_A^o}{e} \tag{5}$$

Exercise 12:

Part a)

Assign rate constants, k_i , to equations 1,2, and 3.

$$R + G \xrightarrow{k_1} 2R \tag{1}$$

$$L + R \xrightarrow{k_2} 2L \tag{2}$$

$$L \xrightarrow{k_3} D$$
 (3)

Derive rate equations for each equation.

$$\mathbf{r}_1 = k_1 C_R C_G \tag{4}$$

$$\mathbf{r}_2 = k_2 C_L C_R \tag{5}$$

$$\mathbf{r}_3 = k_3 C_L \tag{6}$$

Express the accumulation rate of each species in terms of the above rates.

$$\frac{dC_R}{dt} = 2\mathbf{r}_1 - \mathbf{r}_1 - \mathbf{r}_2 \tag{7}$$

$$\frac{dC_L}{dt} = 2\mathbf{r}_2 - \mathbf{r}_2 - \mathbf{r}_3 \tag{8}$$

Substituting equations (4), (5), and (6) gives:

$$\frac{dC_R}{dt} = k_1 C_R C_G - k_2 C_L C_R \tag{9}$$

$$\frac{dC_L}{dt} = k_2 C_L C_R - k_3 C_L \tag{10}$$

Part b)

Solve differential equations using most convenient solver.

$$\frac{dC_R}{dt} = C_R - C_R C_L$$
With initial conditions
$$C_R(0) = 20$$

$$C_L(0) = 1$$

Exercise 13:

Write the rate expression for DEBA, assuming constant volume.

$$r = \frac{dC_{DEBA}}{dt} = kC_{DEA}C_{BB} \tag{1}$$

Find C_{DEA} and C_{BB} in terms of C_{DEBA} .

$$C_{DEA} = C_{DEA}^{o} + \left(\frac{-1}{1}\right)(C_{DEBA} - C_{DEBA}^{o})$$
 (2)

$$C_{BB} = C_{BB}^{o} + \left(\frac{-1}{1}\right)(C_{DEBA} - C_{DEBA}^{o})$$
 (3)

Substitute equations (2) and (3) into equation (1), using the initial conditions given for 1,4-butanediol and acetonitrile, respectively.

$$\frac{dC_{DEBA}}{dt} = k(0.5 - C_{DEBA})(0.5 - C_{DEBA}) \tag{4}$$

$$\frac{dC_{DEBA}}{dt} = k(1 - C_{DEBA})(0.1 - C_{DEBA})$$
 (5)

Rearrange equations (4) and (5), and integrate to find C_{DEBA} as a function of time for each solvent.

1,4-butanediol:

$$\int_{0}^{C_{DEBA}} \frac{dC_{DEBA}}{(0.5 - C_{DEBA})^{2}} = \int_{0}^{t} k \cdot dt$$
 (6)

$$\frac{1}{(0.5 - C_{DEBA})} = kt + 2 \tag{7}$$

acetonitrile:

$$\int_{0}^{C_{DEBA}} \frac{dC_{DEBA}}{(1 - C_{DEBA})(0.1 - C_{DEBA})} = \int_{0}^{t} k \cdot dt$$
 (8)

$$\ln\left(\frac{1 - C_{DEBA}}{1 - 10C_{DEBA}}\right) = \frac{9}{10}kt$$
(9)

Using equations (7) and (9), find the rate constant (k) for each solvent.

1,4-butanediol: $k = 0.000212 \text{ L mol}^{-1} \text{ min}^{-1}$

acetonitrile $k = 0.00160 \text{ L mol}^{-1} \text{ min}^{-1}$

Exercise 14:

Write the first order rate equation for variable volume, Equation 1.5.3,

$$\frac{dn_A}{dt} = -kn_A \tag{1}$$

Rearrange and integrate equation (1) to find $\frac{n_A}{n_A^o}$.

$$\int_{n_A^o}^{n_A} \frac{dn_A}{n_A} = \int_0^t k \cdot dt \tag{2}$$

$$\frac{n_A}{n_A^0} = e^{(-kt)} \tag{3}$$

Use the ideal gas law to derive an expression for $\frac{n_{total}}{n_{total}^o}$.

$$\frac{P_{tot}V}{P_{tot}V^o} = \frac{n_{tot}RT}{n_{tot}^oRT} \tag{4}$$

$$\frac{n_{tot}}{n_{tot}^{o}} = \frac{V}{V^{o}} = \frac{.7V^{o} + V^{o}}{V^{o}} = 1.7$$
(5)

Define the molar expansion factor and find $\frac{n_A}{n_A^o}$.

$$\varepsilon_A = 1 \cdot \left(\frac{3 - 1}{|-1|} \right) = 2 \tag{6}$$

$$\frac{n_{tot}}{n_{tot}^o} = 1 + 2f_A = 1.7$$
 Where $f_A = 1 - \frac{n_A}{n_A^o}$ (7)

$$\frac{n_A}{n_A^0} = 0.65 \tag{8}$$

Solving for k in equation (3) gives $k = 0.000598 \text{ sec}^{-1}$.

To find the time needed to raise the pressure from 1.8 atm to 2.5 atm, first find $\frac{n_{total}}{n_{total}^o}$.

$$\frac{n_{tot}}{n_{tot}^{o}} = \frac{P}{P^{o}} = \frac{2.5}{1.8} = 1.389$$
(9)

Using the value from equation (9), find $\frac{n_A}{n_A^o}$.

$$\frac{n_{tot}}{n_{tot}^{o}} = 1 + \varepsilon_{A} f_{A} = 1.389 \tag{10}$$

$$\frac{n_A}{n_A^0} = 0.8055 \tag{11}$$

Solving for time (t) in equation (3) gives t = 361.7 s.

Exercise 15:

For the constant volume reactor, express equilibrium constant (K) in terms of concentrations.

$$K = \frac{k_1}{k_2} = \frac{C_C}{C_A C_B} \tag{1}$$

Write the mole balance for the reaction.

	Initial	Change	Equilibrium
A	1	<u>-</u> ξ	$1-\xi$
В	2	-ξ	$2-\dot{\xi}$
C	0	ξ	ξ
Total	3	<u>-</u> ξ	$3-\xi$

Rewrite equation (1) in terms of ξ and pressure.

$$K = 2 Lmol^{-1} = \frac{(\xi)}{(1-\xi)(2-\xi)}$$
 (2)

Solving for ξ , gives $\xi = 0.719 \text{ mol L}^{-1}$.

Using the ideal gas law, find P_{tot}^{eq} in terms of ξ .

$$P_{tot}^{eq}V = n_{tot}^{eq}RT \tag{3}$$

$$P_{tot}^{eq} = \frac{n_{tot}^{eq}RT}{V} = (3 - \xi)RT \tag{4}$$

Therefore,

Fractional conversion of A (f_A) = 0.719 Final pressure (P_{tot}^{eq}) = 56.2 atm

Write rate equation for species A.

$$rate = -\frac{dC_A}{dt} = k_1 C_A C_B - k_2 C_C \tag{5}$$

Express all concentrations in terms of C_A .

$$C_B = C_B^o + \left(\frac{-1}{-1}\right)(C_A - C_A^o) \tag{6}$$

$$C_C = C_C^o + \left(\frac{-1}{1}\right)(C_A - C_A^o) \tag{7}$$

Substitute equations (6) and (7) into equation (5).

$$rate = -\frac{dC_A}{dt} = k_1 C_A (1 + C_A) - k_2 (1 - C_A)$$
 (8)

Solve by hand or with a computer solver for each species and plot the composition of the reactor versus time.

Exercise 16:

For the variable volume reactor, express equilibrium constant (K) in terms of mole fractions and total pressure.

$$K = \frac{k_1}{k_2} = \frac{X_C}{X_A X_B} \cdot \frac{1}{P_{tot}} \tag{1}$$

Using the mole balance from Exercise 15, express equation (1) in terms of ξ and P_{tot} .

$$K = 2 \frac{L}{\text{mol}} = \frac{\left(\frac{\xi}{3 - \xi}\right)}{\left(\frac{1 - \xi}{3 - \xi}\right)\left(\frac{2 - \xi}{3 - \xi}\right) \cdot P_{tot}}$$
(2)

Using the ideal gas law, the equilibrium constant can be rewritten as 0.08124 atm⁻¹.

Again, use the ideal gas law to find P_{tot} and solve for ξ .

$$P_{tot} = \frac{n_{tot}^{o}RT}{V^{o}} = 73.85 \text{ atm}$$
 (3)

$$\xi = 0.7681 \tag{4}$$

Therefore, the equilibrium conversion of A = 0.7681.

Write the rate equation for species A.

$$rate = -\frac{1}{V}\frac{dn_A}{dt} = k_1 C_A C_B - k_2 C_C \tag{5}$$

$$rate = -\frac{dn_A}{dt} = \frac{k_1 n_A n_B}{V} - k_2 n_C \tag{6}$$

Express V in terms of V^o and n_A .

$$V = V^{o} (1 + \varepsilon_{A} f_{A}) \tag{7}$$

$$\varepsilon_A = \frac{1}{3} \left[\frac{-1}{|-1|} \right] = -\frac{1}{3} \quad \text{And} \quad f_A = 1 - \frac{n_A}{n_A^o}$$
 (8)

Therefore,
$$V = V^o \left(\frac{2}{3} + \frac{1}{3}n_A\right)$$
 (9)

Express n_B and n_C in terms of n_A .

$$n_B = n_B^o + \left(\frac{-1}{-1}\right)(n_A - n_A^o) = 1 + n_A \tag{10}$$

$$n_C = n_C^o + \left(\frac{-1}{1}\right)(n_A - n_A^o) = 1 - n_A \tag{11}$$

Substitute equations (9), (10), and (11) into equation (6).

$$-\frac{dn_A}{dt} = -\frac{dn_B}{dt} = \frac{dn_C}{dt} = \frac{3k_1n_A(1+n_A)}{V^o(2+n_A)} - k_2(1-n_A)$$
 (12)

Solve for each species by hand or with a computer solver and plot the composition of the reactor and the volume versus time.

Exercise 17:

Write a new mole balance to account for the inert gas.

	Initial	Change	Equilibrium
A	1	<u>-</u> ξ	$1-\xi$
В	2	- ξ	$2-\xi$
C	0	$oldsymbol{\xi}$	ξ
Inert	3	0	3
Total	6	- ξ	$6-\xi$

Solve for ξ , using a modified form of equation (2) from Exercise 16.

$$K = 0.08124 \text{ atm}^{-1} = \frac{\left(\frac{\xi}{6 - \xi}\right)}{\left(\frac{1 - \xi}{6 - \xi}\right)\left(\frac{2 - \xi}{6 - \xi}\right) \cdot P_{tot}}$$
(1)

Use the ideal gas law to find P_{tot} and solve for ξ .

$$P_{tot} = \frac{n_{tot}^{o}RT}{V^{o}} = 147.7 \text{ atm}$$
 (2)

$$\xi = 0.7417 \tag{3}$$

Therefore, the equilibrium conversion of A = 0.7417.

Write the rate equation for species A as done in Exercise 16.

$$rate = -\frac{dn_A}{dt} = \frac{k_1 n_A n_B}{V} - k_2 n_C \tag{4}$$

Express V in terms of V^o and n_A .

$$V = V^{o} (1 + \varepsilon_{A} f_{A}) \tag{5}$$

$$\varepsilon_A = \frac{1}{6} \left[\frac{-1}{|-1|} \right] = -\frac{1}{6} \quad \text{And} \quad f_A = 1 - \frac{n_A}{n_A^o}$$
 (6)

Therefore,
$$V = V^o \left(\frac{5}{6} + \frac{1}{6} n_A \right)$$
 (7)

Express n_B and n_C in terms of n_A .

$$n_B = n_B^o + \left(\frac{-1}{-1}\right)(n_A - n_A^o) = 1 + n_A \tag{8}$$

$$n_C = n_C^o + \left(\frac{-1}{1}\right)(n_A - n_A^o) = 1 - n_A \tag{9}$$

Substitute equations (7), (8), and (9) into equation (4).

$$-\frac{dn_A}{dt} = -\frac{dn_B}{dt} = \frac{dn_C}{dt} = \frac{6k_1n_A(1+n_A)}{V^o(5+n_A)} - k_2(1-n_A)$$
 (10)

Solve for each species by hand or with a computer solver and plot the composition of the reactor and the volume versus time.

