Exercise 3.1 Since X and Y only take non-negative integers, the event { X +Y = k} equals to the following
one:

k
(X+y=k={J{UX=i}n{y =k—i}).

=0

X and Y are independent, we have P {{X =i} N {Y =k —i}} = pXp}_,. It immediately follows that

k
P{X+Y =k}=> ppi_.
1=0

because each {X = i}N{Y = k—i} is exclusive for each i. Assume X ~ B(n,p) and Y ~ Be(p). Apparently,
we have

P{X =k} =,Crp"(1 —p)"F,
P{Y=1}=p, P{Y =0} =1-0p.
Then, applying the above result, we obtain
P{X+Y =k} =pipy +peipt
nCrup* (1= p)" 7 x (1= p) + nCr1p* 11— p)" ! x p
= (nck + nck—l)pk(l - p)n—k+1.

Noting
n! n!
nCr ol = T = e i =k 1)1
_nln—k+1+k)  (n+1)!
Eln—k+1!  Kl(n+1-—k)!
= n+1Ck,

we have P{X +Y =k} = ,,41Cxp*(1 — p)"*t1=*, which implies X +Y ~ B(n +1,p).

Exercise 3.2 Since, X and Y are independent, we get
E[e'™ )] = B[] E[™] = (pe' + (1 — p))"(pe’ + (1 —p))™ = (pe’ + (1 — p))" ™.

Therefore, X +Y ~ B(n+m,p).

Exercise 3.3 We have mx (t) = exp(A(e! — 1)) and my (t) = exp(u(e’ — 1)). Hence,
mx+y(t) _ E(e(X+Y)t) _ E(eXteYt) _ E(eXt)E(eYt)
= mx (t)ymy (t) = exp(A(e" — 1) + p(e" — 1))
= exp((A + p)(e' = 1)),

where we use the independence of X and Y. The above equation implies X +Y ~ Poi(X + p).

Exercise 3.4 Directly calculating the MGF, we get

)= Y ema P a5 L gy (A3.1)

n=1

We have the Taylor expansion of log(1 — x) around z = 0 as

o0 (o)
(n—1!- (=11~ "
log(1 —2) =log1+ Y R
og( x) = log +n:1 " x -

n=1




Hence, substituting z = e'(1 — p) and a = —1/logp into (A.3.1) gives us

Z l = —alog(l —z) = —alog(1 — (1 —p)e’)
n
B log — (1 -p)e")
N logp '
The property of the MGF leads to
d —(1—p)e’ a(l — p)
E[X]=—E["] = = :
X =GP L = Mol =9}~ &

Exercise 3.5 {1 = k} represents the event that the kth trial is successful after m — 1 successes and
k —m — 2 failures. That probability is

P{T =k} = j1Crpap™ (1 = p) D=0 p

k—m

= k—1Ck—mp™ (1 — p)

Exercise 3.6 Since {X =k} = {T =k +m}, it follows from simply substituting the result of Exercise 3.5
that

P{X =k} = k—mtmCr—14mp™ (1 — p)kierm = kCmik—1p™ (1 — p)k' (A.3.2)

Let T = m + k = n. Then, (A.3.2) can be rewritten as P{X = k} = xC,_1p" *(1 — p)*. Substituting
p=1-— % into this equation, we obtain

AN\ AN (n—1)! AN\ AN
w=v=en(1-3) () ~atmme (7)) ()
N et -2)"
SR (n—1—k)! (n—= XNk [
For large n, logn! =~ nlogn — n by Stirling’s forluma. Thus, the last equation can be approximated by

AP { n—1)1 (1- %)”} A { o(n—1) log(n—1)—(n—1) } (1-2)"

KUY (n—1—k) (n—=X\F [~ k! | elr=1-F)loa(n—k-1)~(n—k=1) [ ( — \)k

sl }<<1—%>“)”

k! n—k— 1)n—k-1 (n— \)F
e N

n

k —(n=1) s\ k -\ k
%{ek(l— k1> (%)}((1—é> ) H%xe_kxekxlxe_k
! n— n— n !

Taking n — oo, we have

A
=5 ,
which is (3.8) and this completes the proof.
Exercise 3.7 Let Y = pu+ 0X. Then, the MGF of Y is
o0 1 2
my (t) = EletY] = EletttoX)] = ¢tr / eto® e~ zdx
o0 1 z—ot)? ot)2
:et“/ e x e da
—co V21
tut 02

which is the MGF of N(u, o) itself.



Exercise 3.8

(1) Let my (t) be the MGF of Y. Then, we have by (3.17)
242
my = exp{ut + JT}

Therefore , we obtain by Proposition 2.1 that

ElY] =m{’(0) = p,
VY] = B[Y?] — E2Y] = m{P0) — (m{P}2 = 02 4+ 2 — 2 =

(2) The MGF of X, mx(t), is given by m(t) = ¢7. So we have
+2
T

mP () = (3t + t3)e?
f,2
m$ (1) = (3462 + tY)e T,

which shows E[X3] = m()?) (0) =0 and E[X*] = mg?)(O) =3.

Exercise 3.9
(i) Let Z = X +Y. Then, the distritution function of Z, Fx;y (z), is given by

Fxav(2) = / / a0 ldady

:l/;x (J(i;xf&(y>dy> fx(w)da

= /00 Fy(z — 2)fx(z)dx.

— 00

Differentiating the last equation with respect to z, we have
(oo}
frov@ = [ frle-a)fx(o)d,
— 0o

(ii) Let X = X — ux,Y =Y — py. Then, each density function is given by

2

_
1 20%

fx(x)=\/%gxe ,
1 721;22
f?(y)Z\/%JYe

Y .

Hence, we obtain the density funciton of X +Y as

PR A 1 (z — x)? x?
fXJrY(Z) _[m 2rox oy eXp{— 2(7%, }{_203( dz

& 1 1
= [m p— exp {—EQ(J:,Z)} dux,

where
2 2
z— T
Qx,z) = ( 5 ) + =
Oy Ox
1
== [0% (2% — 222 + 2?) + 03 2]
X%
(2 +09) [ o 0% s 0%
=—5 5 |x°— 222 5 5 z 5 5
JXUY (Ux + JY) (Uz + UY)

2 2 2 2 2 232
o505 o2 +o3 02 +0%)

:@+@WG_QC&)Y+£Tﬁ§_}



Therefore, we get

1 1 22 o0 1(0% +02) w0k \
o —_ — 5 S - d
fxiv(2) 2m0% ol eXp{ 2 (0% +02) } [oo eXp{ 2" 0%0r \" (0% +02) ’

1 1 { 1 22 }
- eXpl =
V2 \/Ug(—l—af, P 2 03( +U%)
2 2
/ \/O’X-i-O'Y 1(0% +0 <x— 20% > da
( )
1

2 2 2 2
V2no%od 2 0% 0y oy + 0y

22 }
“Vor ﬂw/aX+UY { 2(0% +o3) ]
which implies X +Y ~ N(0,0% + 0% ). By Exersice 3.7, we can see that X + Y ~ N(ux + py, 0% + 0%).

Exercise 3.10 The density functions of X and Y can be expressed as follows:

1 =2

e 202,
V2o

fx(x) =

U e
wa—ﬁﬁmﬂp{ L }

By the result of Exercise 3.9, we can get the density funcion of Z = X +Y as

= /_OO fx(@)fy(z —x)dx (A.3.3)

_ /: m exp {_% [j_z + %} } dz. (A.3.4)

Rearranging the inside of [] with tiresome algebra, we obtain

(m_@—udﬁ){%@—ufﬁﬁ

7+ 0 (o + 2

P (mw-m)?  oPto?
2 2 2
O—I

o o

I—l

o3
It follows from substituting the above into (A.3.4) that

fz(2)

e 10% +o%(x) (z = w(@)o*\* | (z = p(x))?020%(x)

- /_oo om0 -0 (7) eXp{ 2 o202(z) Km 2+22) ) T (2 + @) de.

Now let us consider the condition that Z follows normal distribution. Suppose u(z) and o(x) do not depend
on z and denote py and oy respectively. Then, by the latter result of Exercise 3.9, (??7) becomes

SR S TV AY

21(0% + 0%) 2(02 + 0%)

which is a density funciton of N(uy,0? + 0%).

Exercise 3.11

(1)

k+1

n+1 n k+1 n n
/ logydy:Z/ 1ogydy2210gk/ dyzZlogkzlogn!.
1 k=1"% k=1 k

k=1



(2) Since

(LHS) — (RHS) = nlogh + nu + n’c / log ydy
1
=nlogh + nu+nc? — <

n+1
[ylogy]i™! — / dy)
1

= (logh+p+ )n+o?n* — (n+1)log(n +1) >0 (for large n),
we obtain

n+1
nlogh + nu + nc? > / log ydy > logn!.
1

(3) Considering the following inequality:

e log h+np,+n202 e log h+np,+n20'2

n! elog n! -

we can see the series diverge to infinity.

Exercise 3.12 Before proceeding, let us have the following auxiliary result. Let I(\) = fooo ke~ g,
Then, by using the integration by parts, we obtain

1 1 [
T _ k| _—~- _—Xx - k—1_—MXz
() [x ( e )L +>\/0 kx"temMdx
k
= Xlk_l(A).
Apparently Io(\) = 1/), so we can see I(\) = =

(1) Let X ~ Exp(A). Then, from (3.26),

e 1
E[X] :/ zhe Mdx = AL (\) = =,
O )\

o 1

V[X] = E[X? - E[z]* = /0 e Mdx — 2

= Mo(\) — 1 _

Therefore, we get n = /V[X]|/E[X]| =
(2) Let X ~ Ej(\). Then, from (3.27),
2k k

= —1_ -z _ A _ k
E[X]:/O x(k_l)!x’“ e Mdr = = Tk(V) = 7,
[eS) k 2 k 2

Vx| = B - B = [ et e (5) = 2 o - ()

Hence, n = 1/\/E < 1 since k > 1.

(3) Suppose X follows hyper-exponential distribution. Then,

:/ prz)\e )‘””d:c—sz)\Il p_




To prove n > 1, it suffices to show that 02 — 2 > 0 since both variables are positive.

where the last inequality holds by the Jensen’s inequality.

Exercise 3.13

oo Aa Aa oo
- E tX :/ tw a—1_—Az — / a—1_—(A—t)z )
m(t) [e"] ; e e e M T /, e dz

Let us change the variable as y = (A — ¢)z. Then, noting that the integrating range is the same, we have

R A S T AN ot g AN
m(t)_r(a)/o (A—t) YT T (A—t) /0 yrety =33 ) -
—_—

and
-5 - (5) 72505
o5 (5 - 05
So, we obtain
E[X]=m'(0) = % (A.3.5)
VIX] = E[X?] — E[X]? = m"(0) — (%)2 - % (A.3.6)

Exercise 3.14 First, we consider the distribution function of Y, F(z). Since {Y <z} = {1/X <z} =
{X > 1/z}, we have

o0 )\a

Fy(y) = P{Y <2} = /_ o comle-réqe.

1
T

Thus, the density function of Y is given by

d d [ A
f@) = P = 4 [ frgee e

1
z

A ()

_ A —a—1_-\/z
= F(Q)JT (§ .

Exercise 3.15 Since

{Y, <z} = {max{X;, Xo,--- X,,} — flogn < z}
= {max{X1, Xo, - X,,} <z +0logn}

= ﬂ{Xi <z +6logn},

i=1



and X;’s are IID, we have

n z+0logn 1 Y n
Fn(x):P{YnSx}:HP{XiSJH-Hlogn}: [/ ae_?dyl
0

(e

z+0logn z+0logn \ T . n
:| ) (1 zt0oan ) (1 -z > log n)
< —%

mlt

-)

And
lim F,(z) =exp{—e ¢}

is obvious by the definition of e”.

Exercise 3.16 Denote the joint density funciton of X and Y by £(z,y) and let £x(x) = ffooo e Y¢(x,y)dy.

Then,
- [ O:O [ o:o e Y f(2)&(x, y)dady = [ O; f(@)éx (z)dz

Now Denote the MGF of (X,Y) by 5. In other words, n(s,t) = E[e****Y]. Then, we have n(s,—1) =
[ e*"éx (z)dw and

2
n(s, —1) = exp {sE[X] + S VIX] - ElY] + %V[Y] - sC[X, Y]}
2
— Ble™Y | exp {s(E[X] ~ OIX,Y]) + %V[X]}
_ E[efY]E[es(XfC[X,Y])]'
This gives us the following result:

E[es(xfc[X,Y])] _ % _ /OO 5T é)[;(_l;z]d

—0o0

The MGF determines its distribution uniquely, so x(z)/E[e~Y] is the density function of the random
variable X — C[X,Y]. Hence,

Blf(X)e™"] = Ele™"] / fla r = Ele Y |E[f(X — C[X,Y))]

]

holds and this completes the proof.

Exercise 3.17 From (3.39), the mean and the variance of the annural return are given by
E[R] =0.4x0.140.6 x0.15=0.13,
VIR] = (0.12)2 + (0.18)% + 2 x (0.12) x (0.18) x (—0.6) = 0.02088,
where R = 0.4X7 + 0.6X5. Since the period we consider is 5 days, we have as the mean and the variance of

the 5 days return as

5
=0.13 x ——
=013 565
5
2 __
= 0.02088 x ——
7 " 360"

Noting xgs = 1.645 (see Table 3.1), we obtain as VaR with confidence level 95%

5 5
= 1,000,000 x | 1.645 x 1/0.02088 x — — 0.13 x ——
%5 = &, T, WU X ( x " 360 x 360)

= 26207.79.



